ON STOLARSKY AND RELATED MEANS

K. GACŠETIĆ AND SAIMA NAZ KHAN

Abstract

We give a simple proof of the Stolarsky means inequality as well as some related inequalities for similar means of Stolarsky type.

1. Introduction and Preliminaries

Let us consider the following means

$$
\begin{aligned}
& E(x, y ; r, s)=\left\{\frac{r\left(y^{s}-x^{s}\right)}{s\left(y^{r}-x^{r}\right)}\right\}^{\frac{1}{s-r}} \\
& E(x, y ; r, 0)=E(0, r)=\left\{\frac{y^{r}-x^{r}}{r(\ln n-\ln x)}\right\}^{1 / r} \\
& E(x, y ; r, r)=e^{-\frac{1}{r}}\left(\frac{x^{x^{r}}}{y^{y^{r}}}\right)^{1 /\left(x^{r}-y^{r}\right)} \\
& E(x, y ; 0,0)=\sqrt{x y},
\end{aligned}
$$

where x and y are positive real numbers $x \neq y, r$ and s are any real numbers but 0 .
These means, known in literature, are called Stolarsky means. Namely Stolarsky[1] in 1975 (see also [2, p.120]) introduced these means. Stolarsky proved that the function $E(r, s)$ is increasing in both r and s i.e. for $r \leq u$ and $s \leq v$, we have

$$
\begin{equation*}
E(x, y ; r, s) \leq E(x, y ; u, v) \tag{1}
\end{equation*}
$$

In this paper, first we shall give a simple proof of inequality (1). Further we shall introduce two new classes of means of Stolarsky type.

2. A Simple Proof of Stolarsky Means Inequality

Note that $E(r, s)$ is continuous, this means it is enough to prove (1) in the case where $r, s, u, v \neq 0, r \neq s$ and $u \neq v$.

Key words and phrases. convex function, log-convex function, Stolarsky means.

We consider the following function
$f(x)=p^{2} \varphi_{r}(x)+2 p q \varphi_{t}(x)+q^{2} \varphi_{s}(x) \quad$ where $t=\frac{r+s}{2}$ and $p, q \in \mathbb{R}$,
and

$$
\varphi_{r}(x)= \begin{cases}x^{r} / r, & r \neq 0 \\ \ln x, & r=0\end{cases}
$$

Now

$$
\begin{aligned}
f^{\prime}(x) & =p^{2} x^{r-1}+2 p q x^{t-1}+q^{2} x^{s-1} \\
& =\left(p x^{(r-1) / 2}+q x^{(s-1) / 2}\right)^{2} \geq 0
\end{aligned}
$$

This implies f is monotonically increasing. So for $x \neq y$

$$
\frac{f(x)-f(y)}{x-y} \geq 0
$$

i.e.

$$
p^{2} \frac{\varphi_{r}(x)-\varphi_{r}(y)}{x-y}+2 p q \frac{\varphi_{t}(x)-\varphi_{t}(y)}{x-y}+q^{2} \frac{\varphi_{s}(x)-\varphi_{s}(y)}{x-y} \geq 0 .
$$

Let

$$
\phi(r)=\frac{\varphi_{r}(x)-\varphi_{r}(y)}{x-y},
$$

then

$$
p^{2} \phi(r)+2 p q \phi(t)+q^{2} \phi(s) \geq 0
$$

i.e.

$$
\phi^{2}(t) \leq \phi(r) \cdot \phi(s) \quad \text { where } \quad t=\frac{r+s}{2} .
$$

This implies ϕ is log-convex in Jensen sense.
Also $\lim _{r \rightarrow 0} \phi(r)=\phi(0)$, which implies ϕ is continuous for all $r \in \mathbb{R}$. And therefore log-convex.
We need following lemma which proof can be found in [2].
Lemma 2.1. Let f be log-convex function and if, $x_{1} \leq y_{1}, x_{2} \leq$ $y_{2}, x_{1} \neq x_{2}, \quad y_{1} \neq y_{2}$, then the following inequality is valid:

$$
\begin{equation*}
\left(\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)}\right)^{1 /\left(x_{2}-x_{1}\right)} \leq\left(\frac{f\left(y_{2}\right)}{f\left(y_{1}\right)}\right)^{1 /\left(y_{2}-y_{1}\right)} \tag{2}
\end{equation*}
$$

Applying Lemma 2.1 for $f=\phi$, (let $r, s, u, v \neq 0$) we get an inequality

$$
\left\{\frac{r\left(y^{s}-x^{s}\right)}{s\left(y^{r}-x^{r}\right)}\right\}^{1 /(s-r)} \leq\left\{\frac{u\left(y^{v}-x^{v}\right)}{v\left(y^{u}-x^{u}\right)}\right\}^{1 /(v-u)} .
$$

Since $E(r, s)$ is continuous, we have (1).

Conclusion

In the literature, many researchers have published so many results on different major generalizations of convex function. Many authors today focus on interval-valued functions, which is known as the (h, m) -convex interval-valued function. Additionally, we give the rigorous proof of the famous Hermite-Hadamard type inequality for m-convex in intervalvalued.

References

[1] K. B. Stolarsky, Generilization of the logarithmic mean, Math. Mag. 48 (1975), 87-92.
[2] J. E. Pečarić, F. Proschan and Y. C. Tong, Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.
[3] J. E. Pečarić, I. Perić and H. M. Srivastava, A family of the Cauchy type meanvalue theorems, J. Math. Anal. Appl. 306 (2005) 730-739.

1 Department of Mathematics, University of Mars, Venus
Email address: Gac01@maths.com
2 School of Advanced Mathematical Sciences, Smith Town, WonDERLAND

Email address: wonderland008@gmail.com

