Govt. Ghazali Degree College, Jhang

(Important Short Questions) Course: Algebra and Trigonometry

Chapter # 10

Trigonometric Identities

Following short questions are selected from previous 5 years papers of different boards. Solve these at your own to perform well in annual exams.

- 1. Find the distance between the points P(cosx, cosy) and Q(sinx, siny).
- 2. Without using tables/calculator, find the values of $sin540^{\circ}$, $sin105^{\circ}$ and $cos105^{\circ}$.
- 3. If α , β , γ are the angles of a triangle ABC, then prove that $\cos(\frac{\alpha+\beta}{2}) = \sin\frac{\gamma}{2}$.
- 4. If α , β , γ are the angles of a triangle ABC, then prove that $tan(\alpha + \beta) + tan\gamma = 0$.

5. Show that
$$tan(\alpha + \beta) = \frac{tan\alpha + tan\beta}{1 - tan\alpha tan\beta}$$

- 6. Show that $\cos(\alpha + \beta)\cos(\alpha \beta) = \cos^2\beta \sin^2\alpha$.
- 7. Show that $cos(\alpha + 45^{\circ}) = \frac{1}{\sqrt{2}}(cos\alpha sin\alpha)$. Abbas
- 8. Show that $sin(\frac{\pi}{2} + \alpha) = cos\alpha$.
- 9. Show that $\frac{sin3x-sinx}{cosx-cos3x} = cot2x$? In the contrast of the cont
- 10. Prove that $tan(45^{\circ} + A)tan(45^{\circ} A) = 1$.
- 11. Prove that $cot\alpha tan\alpha = 2cot2\alpha$.
- 12. Prove that $tan(270^{\circ} \theta) = cot\theta$.
- 13. Prove that $\frac{\cos 8^{\circ} \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$.
- 14. Prove that $cot\alpha tan\alpha = 2cot2\alpha$.
- 15. Prove that $sin(180^{\circ} + \alpha)sin(90^{\circ} \alpha) = sin\alpha cos\alpha$.
- 16. Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$.
- 17. Prove that $\frac{\cos 11^\circ + \sin 11^\circ}{\cos 11^\circ \sin 11^\circ} = \tan(56^\circ)$.
- 18. Express sin2x + sin7x as a product.
- 19. Express $sin120^\circ sin46^\circ$ as sum or difference.
- 20. Express $cos6\theta + cos3\theta$ as a product.
- 21. Express the product $2\cos 5\theta \sin 3\theta$ as a sum or difference.

 $Best \ of \ Luck$