bakore Board - Arraal 2007 Group II

Mathematics Paper-I(Obj), Time Allowed: 30 Mints Max. Marks: 20, Available online @ <u>http://www.mathcity.org/fsc</u>

Q.1 Four possible ans answer	wers to each statement	t are given below. Tic	ek (\checkmark) the correct
(i) If n is a prime number,	then \sqrt{n} is		
(a) Real number	(b) Rational number	(c) Irrational number	(d) Complex number
(ii) $p \wedge q$ represents			
(a) Disjunction	(b) Conjunction	(c) Conditional	(d) Quantifier
(iii) $(AB)^{-1} =$			
(a) AB	(b) BA	(c) $A^{-1}B^{-1}$	(d) $B^{-1}A^{-1}$
(iv) A Homogenous system	of linear equation has:		
(a) Finite Solution	(b) Unique Solution	(c) Infinite Solution	(d) Two Solution
(v) Sum of four roots of un	ity is:		
(a) 1	(b) -1	(c) 0	(d) I
(vi) Equation having same	solution is called:		
(a) Exponential equation	(b) Radical equation (c) Simultaneous equation	(d) Reciprocal equation
(vii) The partial fraction of	$\frac{1}{(x^2-1)}$ are of type		
(a) $\frac{A}{(x+1)} + \frac{B}{(x-1)}$	(b) $\frac{A}{(x-1)} + \frac{B}{(x-1)^2}$	(c) $\frac{A}{(x+1)} + \frac{B}{(x+1)^2}$	(d) $\frac{A}{(x-1)} + \frac{B}{(x-1)}$
(viii) If in an A.P $a_n = \frac{n}{2n}$	$\frac{1}{1}$, then a_4 is equal to:		
(a) 4	(b) 3	(c) $\frac{4}{3}$	(d) $\frac{4}{9}$
(ix) Geometric mean betwe	en 2 and 8 is:		
(a) 2	(b) 8	(c) 4	(d) 16
$(\mathbf{x}) \sum_{k=1}^{n} k =:$			
(a) <i>nk</i>	(b) $\frac{n(n+1)}{2}$	(c) $\frac{k(k+1)}{2}$	(d) k^{n}
(xi) If A and B are disjoint	event, then $P(A \cup B) =$		

MathCity.org

Merging man and maths

(a) P(A) + P(B) (b) $P(A) + P(B) - P(A \cup B)$ (c) $P(A) + P(B) - P(A \cap B)$ (d) P(A) - P(B)

(xii) 0! is equal to:				
(a) 0	(b) 1	(c)	10	(d) 100
(xiii) Expansion of $(8-2x)^{-1}$ is	valid if :			
(a) $ x > 4$	(b) $ x < 4$	(c)	x = 0	(d) $ x = 4$
(xiv) θ° is measured in:				
(a) Circular system	(b) Sexagesimal system	(c)	Radian measure	(d) Rotation measure
(xv) Sum of all angles in a trian	gle is equal to:			
(a) 90°	(b) 180 ⁰	(c)	270^{0}	(d) 360°
(xvi) Period of $Sin3x$ is:				
(a) 3 <i>π</i>	(b) 2 <i>π</i>	(c)	$\frac{\pi}{3}$	(d) $\frac{2\pi}{3}$
(xvii) Angle below the surface l	ine is called angle of:			
(a) Right angle	(b) Oblique angle	(c)	Depression	(d) Elevation
(xviii) The greatest angle is opp	posite to:			
(a) Smallest side	(b) Greatest side	(c)	Same side	(d) Right side
$(\mathbf{xix}) Tan^{-1}A - Tan^{-1}B =$				
(a) $Tan^{-1}\frac{AB}{1+AB}$	(b) $Tan^{-1}\frac{A-B}{1+AB}$	(c)	$Tan^{-1}\frac{A-B}{1-AB}$	(d) $Tan^{-1} \frac{AB}{1-AB}$
(xx) Equation, containing at least	st on trigonometric funct	tion	is called:	
(a) Exponential equation(c) Trigonometric equation		(b (d) Partial equation) General equation	

Available online at http://www.MathCity.org

For more news and updates visit http://www.mathcity.org

If you have a question; ask at http://forum.mathcity.org

If you found any error submit at <u>http://www.MathCity.org/error</u>

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Lakore Board - Arrzal 2007 Group II

Mathematics Paper-I(Sub), Time Allowed: 2:30 Hours Max. Marks: 80, Available online @ <u>http://www.mathcity.org/fsc</u>

Section – I

Note: Write any Twenty-Five (25) short answers. While writing answer write its part number carefully. Each part carries two marks. 50

Q # 1:

MathCity.org

Merging man and maths

2 # 1:				
(i)	Find the multiplicative inverse of $(-4, -7)$			
(ii)	Find modulus and conjugate of $z = 1 - i\sqrt{3}$			
(iii)	Explain set of natural number is neither monoid nor a group w.r.t "t"			
(iv)	Define conjunction and disjunction of two statements p and q			
(v)	If $A = \{1, 2, 3, 4, 5,\}$ and $B = \{4, 5, 6, 7, 8, 9,\}$ then find A-B and B-A			
(vi)	If $\begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$ = A show that $A^{-1} = I_2$			
(vii)	Define symmetric and hermitian matrix.			
(viii)	If $\begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ find $ A $			
(ix)	Solve $x^2 + 7x + 12 = 0$			
(x)	Evaluate $w^{28} + w^{29} + 1$			
(xi)	Discuss the nature of roots of $25x^2 - 30x + 9 = 0$			
(xii)	α, β are roots of $5x^2 - x - 2 = 0$ form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$			
(xiii)	Find partial fraction of $\frac{3x}{(x-1)(x+2)}$			
(xiv)	Define conditional equation and improper rational fraction.			
(xv)	If the nth term of the A.P is $(3n-1)$ find the A.P.?			
(xvi)	Sum the series $-3 + (-1) + 1 \dots up to 16$ terms.			
(xvii)	Find value of r if $a_4 = \frac{8}{27}$ and $a_7 = \frac{-64}{729}$ of a G.P.			
(xviii)	Sum the series $1 + 2x + 4x^2 +\infty$			
(xix)	Find two G.M's between 1 and 8			
(XX)	Find 8 th term of H.P. $\frac{1}{2}, \frac{1}{5}, \frac{1}{8}$			
(xxi)	How many different 4 digit number can be formed out of the digit 1,2,3,4,5,6 when no digit			
	is repeated?			
(xxii)	${}^{n}C_{10} = \frac{12 \times 11}{2}$ find n			
(xxiii)	There are 5 green and 3 red balls in a box, one ball is taken out. What is probability that the ball is green?			
(xxiv)	Find first three terms in the expansion of $(\frac{a}{2} - \frac{2}{a})^6$ by using binomial theorem.			
(xxv)	Neglecting square and higher powers of "x" show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} = 1 + \frac{3x}{2}$			
(xxvi)	Show that the inequality $4^n > 3^n + 4$ is true for $n = 3, 4$			
(xxvii)	Find r when $l = 56cm.\theta = 45^{\circ}$			
()				

 $\sin\theta = -\frac{1}{\sqrt{2}}$ and terminal arm of the angle is not in Quadrant III, find values of $\tan\theta$ and (xxviii) $\cos\theta$ Prove that $\sin(\theta + \frac{\pi}{6}) + \cos(\theta + \frac{\pi}{3}) = \cos\theta$ (xxix) Prove that $\sin 2\alpha = 2\sin \alpha \cos \alpha$ (xxx) (xxxi) What is the range and domain of the cotangent function? At the top of a cliff 80m high, the angle of depression of a boat is 12° . How far is the boat (xxxii) from the cliff? If in a triangle ABC $\beta = 60^{\circ}, \gamma = 15^{\circ}, b = \sqrt{6}$ find a. (xxxiii) Show that $r_2 = s \tan(\frac{\beta}{2})$ (xxxiv) If sides of triangle ABC a = 34, b = 20, c = 42 find area of the triangle. (xxxv) Find the value of $\tan\left(\sin^{-1}\left(\frac{-1}{2}\right)\right)$ (xxxvi) Solve the equation $\cot^2 \theta = \frac{1}{2}$ (xxxvii)

Section – II

Note: Attempt any THREE questions.

 Q # 3 (a) Show that the set consisting of elements of the form (a + √3b) (a, b are rationals) is an abelian group w.r.t addition. (b) Solve the equation √x+8 + √x+3 = √12x+13 	5 5
Q # 4 (a) Solve the system of liner equations $2x - y + z = 8$, $x + 2y + 2z = 6$, $x - 2y - z = 1$ by Cramer's rule. (b) Find the values of n and r when ${}^{n-1}C_{r-1}$: ${}^{n}C_{r}$: ${}^{n+1}C_{r+1} = 3:6:11$	5 5
Q # 5 (a) Sum the series $3+5-7+9+11-13+15+17-19+to 3n$ terms. (b) If x is so small that its square and higher power by neglected ,then show that $\frac{(9+7x)^{\frac{1}{2}}-(16+3x)^{\frac{1}{4}}}{4+5x} = \frac{1}{4} - \frac{17}{284}x$	
Q # 6 (a)Draw the graph of $y = \sin(\frac{x}{2})$ for $x \in [0, 2\pi]$	5

(b) Express CosA + Cos3A + Cos5A + Cos7A as a product. **Q** # 7 (a) Solve the triangle ABC in which $a = 53, \beta = 88^{\circ}36^{\circ}, \gamma = 31^{\circ}54^{\circ}$

(b) Prove that $r = \frac{\Delta}{r}$ with usual notations.

Available online at http://www.MathCity.org

For more news and updates visit http://www.mathcity.org

If you have a question; ask at <u>http://forum.mathcity.org</u>

If you found any error submit at http://www.MathCity.org/error

Composed by: Haji Asif ALI (<u>asif.mathematics@gmail.com</u>) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA 5

5

5