Q. 1 Four possible answers to each statement are given below. Tick (\checkmark) the correct answer

(i) If n is a prime number, then \sqrt{n} is
(a) Real number
(b) Rational number
(c) Irrational number
(d) Complex number
(ii) $p \wedge q$ represents
(a) Disjunction
(b) Conjunction
(c) Conditional
(d) Quantifier
(iii) $(A B)^{-1}=$
(a) AB
(b) BA
(c) $A^{-1} B^{-1}$
(d) $B^{-1} A^{-1}$
(iv) A Homogenous system of linear equation has:
(a) Finite Solution
(b) Unique Solution
(c) Infinite Solution
(d) Two Solution
(v) Sum of four roots of unity is:
(a) 1
(b) -1
(c) 0
(d) I
(vi) Equation having same solution is called:
(a) Exponential equation
(b) Radical equation
(c) Simultaneous equation
(d) Reciprocal equation
(vii) The partial fraction of $\frac{1}{\left(x^{2}-1\right)}$ are of type
(a) $\frac{A}{(x+1)}+\frac{B}{(x-1)}$
(b) $\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}$
(c) $\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}$
(d) $\frac{A}{(x-1)}+\frac{B}{(x-1)}$
(viii) If in an A.P $a_{n}=\frac{n}{2 n+1}$, then a_{4} is equal to:
(a) 4
(b) 3
(c) $\frac{4}{3}$
(d) $\frac{4}{9}$
(ix) Geometric mean between 2 and 8 is:
(a) 2
(b) 8
(c) 4
(d) 16
(x) $\sum_{k=1}^{n} k=$:
(a) $n k$
(b) $\frac{n(n+1)}{2}$
(c) $\frac{k(k+1)}{2}$
(d) k^{n}
(xi) If A and B are disjoint event, then $P(A \cup B)=$
(a) $P(A)+P(B)$
(b) $P(A)+P(B)-P(A \cup B)$
(c) $P(A)+P(B)-P(A \cap B)$
(d) $P(A)-P(B)$
(xii) 0 ! is equal to:
(a) 0
(b) 1
(c) 10
(d) 100
(xiii) Expansion of $(8-2 x)^{-1}$ is valid if :
(a) $|x|>4$
(b) $|x|<4$
(c) $|x|=0$
(d) $|x|=4$
(xiv) θ° is measured in:
(a) Circular system
(b) Sexagesimal system
(c) Radian measure
(d) Rotation measure
(xv) Sum of all angles in a triangle is equal to:
(a) 90°
(b) 180^{0}
(c) 270^{0}
(d) 360°
(xvi) Period of $\operatorname{Sin} 3 x$ is:
(a) 3π
(b) 2π
(c) $\frac{\pi}{3}$
(d) $\frac{2 \pi}{3}$
(xvii) Angle below the surface line is called angle of:
(a) Right angle
(b) Oblique angle
(c) Depression
(d) Elevation
(xviii) The greatest angle is opposite to:
(a) Smallest side
(b) Greatest side
(c) Same side
(d) Right side
(xix) $\operatorname{Tan}^{-1} A-\operatorname{Tan}^{-1} B=$
(a) $\operatorname{Tan}^{-1} \frac{A B}{1+A B}$
(b) $\operatorname{Tan}^{-1} \frac{A-B}{1+A B}$
(c) $\operatorname{Tan}^{-1} \frac{A-B}{1-A B}$
(d) $\operatorname{Tan}^{-1} \frac{A B}{1-A B}$
($\mathbf{x x}$) Equation, containing at least on trigonometric function is called:
(a) Exponential equation
(b) Partial equation
(c) Trigonometric equation
(d) General equation

Available online at http://www.MathCity.org

For more news and updates visit http://www.mathcity.org
If you have a question; ask at http://forum.mathcity.org
If you found any error submit at http://www.MathCity.org/error

Composed by: Haji Asif ALI (asif.mathematics@gmail.com) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

Section - I

Note: Write any Twenty-Five (25) short answers. While writing answer write its part number carefully. Each part carries two marks.

Q \# 1:

(i) Find the multiplicative inverse of ($-4,-7$)
(ii) Find modulus and conjugate of $z=1-i \sqrt{3}$
(iii) Explain set of natural number is neither monoid nor a group w.r.t ' \mathbf{t} "
(iv) Define conjunction and disjunction of two statements p and q
(v) If $A=\{1,2,3,4,5$,$\} and B=\{4,5,6,7,8,9$,$\} then find A-B and B-A$
(vi) If $\left[\begin{array}{rr}i & 0 \\ 1 & -i\end{array}\right]=\mathrm{A}$ show that $A^{-1}=I_{2}$
(vii) Define symmetric and hermitian matrix.
(viii) If $\left[\begin{array}{rrr}2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2\end{array}\right]$ find $|A|$
(ix) Solve $x^{2}+7 x+12=0$
(x) Evaluate $w^{28}+w^{29}+1$
(xi) Discuss the nature of roots of $25 x^{2}-30 x+9=0$
(xii) α, β are roots of $5 x^{2}-x-2=0$ form the equation whose roots are $\frac{3}{\alpha}$ and $\frac{3}{\beta}$
(xiii) Find partial fraction of $\frac{3 x}{(x-1)(x+2)}$
(xiv) Define conditional equation and improper rational fraction.
(xv) If the nth term of the A.P is $(3 n-1)$ find the A.P.?
(xvi) Sum the series $-3+(-1)+1 \ldots$ upto 16 terms.
(xvii) Find value of r if $a_{4}=\frac{8}{27}$ and $a_{7}=\frac{-64}{729}$ of a G.P.
(xviii) Sum the series $1+2 x+4 x^{2}+\ldots \infty$
(xix) Find two G.M's between 1 and 8
($\mathbf{x x}$) Find $8^{\text {th }}$ term of H.P. $\frac{1}{2}, \frac{1}{5}, \frac{1}{8} \ldots$
(xxi) How many different 4 digit number can be formed out of the digit 1,2,3,4,5,6 when no digit is repeated?
(xxii) ${ }^{n} C_{10}=\frac{12 \times 11}{2}$ find n
(xxiii) There are 5 green and 3 red balls in a box, one ball is taken out. What is probability that the ball is green?
(xxiv) Find first three terms in the expansion of $\left(\frac{a}{2}-\frac{2}{a}\right)^{6}$ by using binomial theorem.
($\mathbf{x x v}$) Neglecting square and higher powers of " x " show that $\frac{\sqrt{1+2 x}}{\sqrt{1-x}}=1+\frac{3 x}{2}$
(xxvi) Show that the inequality $4^{n}>3^{n}+4$ is true for $n=3,4$
(xxvii) Find r when $l=56 \mathrm{~cm} . \theta=45^{\circ}$

```
(xxviii) \(\sin \theta=-\frac{1}{\sqrt{2}}\) and terminal arm of the angle is not in Quadrant III,find values of \(\tan \theta\) and
    \(\cos \theta\)
    (xxix) Prove that \(\sin \left(\theta+\frac{\pi}{6}\right)+\cos \left(\theta+\frac{\pi}{3}\right)=\cos \theta\)
    (xxx) Prove that \(\sin 2 \alpha=2 \sin \alpha \cos \alpha\)
    (xxxi) What is the range and domain of the cotangent function?
(xxxii) At the top of a cliff 80 m high, the angle of depression of a boat is \(12^{\circ}\).How far is the boat
        from the cliff?
(xxxiii) If in a triangle \(\mathrm{ABC} \beta=60^{\circ}, \gamma=15^{\circ}, b=\sqrt{6}\) find a.
(xxxiv) Show that \(r_{2}=s \tan \left(\frac{\beta}{2}\right)\)
(xxxv) If sides of triangle \(\mathrm{ABC} \mathrm{a}=34, \mathrm{~b}=20, \mathrm{c}=42\) find area of the triangle.
(xxxvi) Find the value of \(\tan \left(\sin ^{-1}\left(\frac{-1}{2}\right)\right)\)
(xxxvii) Solve the equation \(\cot ^{2} \theta=\frac{1}{3}\)
```


Available online at http://www.MathCity.org

For more news and updates visit http://www.mathcity.org
If you have a question; ask at http://forum.mathcity.org
If you found any error submit at http://www.MathCity.org/error
Composed by: Haji Asif ALI (asif.mathematics@gmail.com) LECTURER IN MATHEMATICS, SUPERIOR GROUP OF COLLEGES SHEIKHUPURA

