Mechanics made easy Moment of Inerti
Definition: A set of three mutually perpendicular axes having origin O which are fixed in the rigid body and

rotating with it and which are such that the product of inertia with respect to them are zero are called “principal

axes of inertia” or simply “principal axes” of body at point O.

Definition: An axis is called “principal axis of inertia” or simply “principal axis” of a rigid body if directions of

angular momentum L and angular velocity w are same, when rigid body is rotating about this axis.

Theorem: Above. two definitions. of principal axes.are
equivalent.

Proof: Suppose-that for a rigid-bedy we have three
mutually concurrent and mutually-perpendicular axes for
which first definition holds. Choosing these axes/as
Cartesian coordinate axes, the inertia matrix with respect
to this coordinate system is given by

Conversely, suppose that for a rigid -body we have
three mutually © concurrent | _and mutually|
perpendicular axes for which second-definition holds.
Choosing these axes as Cartesian coordinate axes, and
assuming that body rotates about x — axis, we have,
by supposition;~angular momentum™ and angular
velocity are parallel

iy 000 = L/=\w,, where A is constant
O 122 0 = Lxli + szj + Lx3k == )kl(wxli + Oi + Ok)

0 0 Iy Ly AWy
=> |\Lle)=( 0 |-—==>@)
Lx3 0

If rigid body_rotates about x —_axis, then its angular
As we know that—[L,] = [I][w,]

(5]

[1]=

velocity has the form w, =

L, L1 Ly L3\ jwy
As we know that [L,] = [1][w,] = Liz =|lz 2 Iz < 5 )
= sz = O 122 0 < 0 >: 0 = Illwxl
Lys 0 0 I33 0 0 = <I1zwx1> === (2)
L1305

Wx1
(')
0
= L, =110 }\10)351 [11wx1
This showsthat angular momentum is parallel to angular < 0 ) = (112 wxl)
velocity. Similarly, we can show that when body rotates 0 13051

about y or z axis then angular momentum is parallelto | = Il? =hL3=0 ] Wy1 # 0
angular velocity. Hence second definition also holds for | Similarly, assuming the rotation of body about y —
given axes. axis (L, = A, w,), we get, I;; = [,3 =0.
= All product/of inertia are zero. Hence first definition
also holds for'given axes. (Note: A; =1y, i =1,2,3)
Definition: The moment of inertia with respect to a principal axis is called “principal moment of inertia”.
Theorem: Prove that for a rigid body a set of three mutually perpendicular principal axes exists at given point.
Proof: As we know.from the definition-of principal axis that if a rigid body rotates bout principal axes, passing
through a point-0, then the angular-momentum L and the-angular velocity w-of the body are in same direction. So
we can write, L = lw, where, Ais constant
Let, L =Lii+ Lyj+ L3k, W = w1l + w,j + w3k
Then, Lii+ L,yj + L;ik=Nwqi + w,j + w3k)
Comparing corresponding components on both sides of above vector equation;we get

Li =Awq, " L, = Aw,, Ly = Aw;

[L] =[]
Ly I14
(5)- (1
Ls I13

Li; ILiz\ywr
L |\w2 | ——————— - (2)
I33/ \W3

IZZ
I3

1110)1 + 1120)2 + ]13(1)3 = /1(1)1

112(1)1 + 1220)2 + 1230)3 = l(l)z

Lizwq + 3wy + 3303 = Aws

From (1) and (2), we have

As we know that,

From (1) and (2), we get,

This system can be written as,
(Iih — Dwq + L0, + L1303 =0
Iipw1 + (I = Dw, + hz03 =0
Lizw1 + 3w, + (I33 — Dwz =0
This is homogeneous system of three equations in three unknowns w4, w, and w;. This system will have non
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Mechanics made easy Moment of Inertia
trivial solution if an only if

Li1—A4  Ij; I3
P ILy—4A I3 |=0
I3 I3 I33—4

This is cubic-equation in I which-is-called characteristic.equation of inertiasmatrix [ I ]. It has three-roots, say, 4,
A, and 43, which.are, in fact, principallmoments of inertia..By substituting 4.=.4,in system (3), we.can obtain the
ratios wq: w,: @3, which give direction of principal axes relative to which moment of inertia is/2;:Similarly, we
can find direction’of other two principal axes corresponding to moments of inertia 1, and 1;. We=can always find
three mutually perpendicular principal axes because [ I] is symmetric. This shows that there exists three mutually
perpendicular principal axes passing through given point 0.

Problem: A triangular plate is made of uniform material and has sides of lengths a, 2a and v3a. Determine the
(direction of) principal axes and corresponding principal moments of inertia at 30° corner (or vertex).

Solution: Let M-and o, respectively;-be-the mass and surface (areal) mass density of triangular plate-:OAB lying in
xy-plane, as shown in the figure, with-|0A| = v3a, |AB}-=-a-and |0B| = 2a-

Clearly, |0B[%= (2a)? = (V3a)" + a2 = |0A|? + |AB[% B

This shows that OAB is right angled triangle with right angle at O.
= @ =g — -1 i :.I!!'f o
Furthermore, tan(m £AOB) = oA ="Ta = ™ £AOB = tan (\/5) 30°.

Thus, we have to find principal axes and corresponding principal
moments of inertia at vertex 0. The moment of inertia of triangular
plate about side 04 (x-axis)is given by

Lix = hy = loa = ZMIAB|? = = Ma?

The moment of inertia of triangular plate about side AB.is given by
Ip = =M|0AP = 1 M(v3a)’ =3Ma?

Let C be the centre of mass of the plate.and take D on OB“and Eon

OA such that DE is passing through C and parallel to AB. Z
Then moment of ihertia of plate about DE is given by (using parallel axis theorem), as follows:

Ipg = lap — MIAD|2 = ~Ma? — M|ADI? — — — — — — - (1)
From figure, |AD| = |0A| — |0D| = +/3a —(x-coordinate of centre of mass C) = v3a — % (x4 + x4 + x4)

=\/§a—§(0+\/§a+\/§a)=\/§a—2\/3§a=3\/§a_2\/§a=@=i___> (2)

3 3 V3
. : wly o (a2 1. 5 1. 5  3Ma?-2Ma® _ 1, o
Using (2) in (1), we get, IDE—ZMa M(\/E) —2Ma 3Ma =~ —6Ma
Then moment ofinertia of plate about.y-axis is given by (using parallel axis theorem), as follows,
2
1 1 0++/3a +V3a
Ly, = I, = Ipg + M|OD|? =6Ma2 + M(x-coordinate of centre of mass C)? =EMa2 +M< 3 )

Ly gy (230 1, s Aoy M 48Ma? 9 3
T6 39 "6 T3 6 [t T2
Then moment.of inertia of plate about z-axis is given by.(using perpendicular axis theorem), as follows,

_ _ _ 1.5 3., 5 Ma?+9Ma® 10, o 5, 5
IZZ—133—Ixx+Iyy—6Ma +2Ma = . —?Ma —3Ma

Va( 75 Ga(_ (v\[5
Ly =l == [axydm = —o [ xydxdy = —0 ng( yfoxy dy) dx = -0 xz(;l (x (y?) y3=0>dx “dm = odxdy
V3a
_ _oV8a 3. 1/ 2M\(x* _ _1/2M\(9a*\ _ V3, 5 L. M M _ 2M
=~ heg ¥ dx = 6(\/§a2)(4)x=0_ 6(\/§a2)(4)_ 2 Ma 7 T Loamel T {Ga)@ | Vaa

As z = 0 in xy-plane, therefore, I, =I;3=—[xzdm =0 and I, =I,3 = —fyzdm =0
The inertia matrix at point O, with respect to coordinate system Oxyz, is given by

1 2 _¥B 2
Ly Ly Ls GMa 4 Ma 0 2a —3v3a 0 L
(o] = 512 522 523 = _gMaz %Ma2 0 |=|-3v3« 18« 0 | where a=_Ma®
13 I3 I3
0 gMaz 0 0 20
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Mechanics made easy Moment of Inertia
To find the eigenvalues, we have the characteristic equation det([I,] — A[I3]) = 0, where [I5] is unit matrix of
order 3.

2a—1 —3\3a 0
det([Io] —AlIk) =0 = —3v3a 18a—1 0 =0
0 0 200 — A
On expanding by third row, we get,

(20a - )fa - )(18a — 2) =(-3v3a)"| =0 == (20a - D[36a® =2a1 — 18aA + 1* —27a*] = 0
= (200 — 1)[21? =20a1 +9a?*] =0
of, A2—20al49a2 =0 > 2= 20820 -4(1)0a?)
! 2(1)

20a+v400a2-36a? _ 20a+v364a? [ 20a+2V/91a
- 2 7 2

Either 200—21=0 = A=20a

=> A= >
= (10 £V91)a
Thus, Ay = 20aq, Ay, = (10 + \/‘ﬁ)a, and Az = (10 — \/ﬁ)a

These eigenvalues gives principal moments of inertia at.point O. To find the direction of corresponding principal
axes, we find eigenvectors corresponding to each eigenvalue.

X1
For A, = 20a: LetX = <x2> be the required eigenvector corresponding to eigenvalue 1; = 20q, then
X3
2a —20a  —3V3a 0 Xy 0 —18a —3V3a 0\ /M 0
(To] =4 [DX=0=| —3v3a  18a=20a 0 <x2> = <0> =|-3v8a- —2a 0 <x2> = <0>
0 0 20a — 20a/ X3 0 0 0 0/ \¥3 0
{_18“751 —3V3ax, =0 N {6761 +V3x, =0 ——— ——— 3
—3\/§ax1 = 2ax, =0 3\/§x1 +2x, =0 ——— —— (4)

From Eq. (3), we have x; = ?xz and putting it in (4), we'get, —3+/3 (g xz) =2x,=0>= —;xz =2x, =0=x, =
0.Putx, =0in (3), weget, x; =0

X1 0 0
Thus,X=<xz):(0>, where, reR, r#0 = For r =1, we get, X=<O>=Oi+0j+k=k

X3 r y 1
1

For 1, = (10 +v91)a: Let Y = (3’2) be the required eigenvector corresponding to eigenvalue 4, = (10 +

V3
\/9_1)0(, then

—(8+V91)a~.. —3V3a 0 v 0
(lod= LlDY =0 = 3V3a e (8-OD)a 0 (y) = <o>
0 0 (10=+91)a/ 3/ =10
=(8 +V91)ay.=3v3ay, = 0 (8+V91)y; +3V3y, =0 — — — === (5)
= 4=3V3ay; + (8 =VOT)ay, =0 = 933y, — (8 -VO1)y, =0 — — — — == (6)
(10 —v91)ay; =0 y; =0
From Eq. (5), we-have 2:—: = %\E_l andfrom Eq. (6), we'have 2:—: =2 ;}gﬁ =2 ;\}gﬁ : ::g = 3\/5(;2:@) = 8_+3\/‘/9§_1

Thus, Eq. (5) and Eq. (6) are mutually identical, therefore, last system of equations can be written as

{(8 +91)y;#3V3y, = 0

y3=0
Let, y, =s, where, seR, s+ 0 > oy = 8_51//_3_15
V1 33 3V3
Therefore, Y =1Y2 | = 8+*S{ﬁ = For s = —(8 + \/79_1), weget, Y = —(8 + \/ﬁ) =3V3i— (8 + \/‘ﬁ)]
V3 0 0
4
For 2;=(10- \/91)0{: Let Z = <Zz> be the required eigenvector corresponding to eigenvalue
Z3
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Mechanics made easy Moment of Inertia
A3 = (10 —v91)a, then

—(8 — \/ﬁ)a —3v3a 0

z
(o]~ 21Dz =0 = “3Via  (8+OD)a 0 (zl) - (8)
0 0 (10 +V91)a) 3/ O
—(8 - \/ﬂ)azl —3V3az, =0 (8 — \/ﬁ)zl +3V32,=0 —————— (7)
= —3v3az, + (8 + \/9_1)azz =0 = 3v3z, — (8 + M)Zz =0 — — — — —= (8)
(10 +v91)az; = 0 z3=0
-3v3 z; _8+V91 _8+V91 8-V91 _ =27 -3v3

Zy z; _
From Eq. (7), we have Z—S_mandfromEq.(8),wehave = 3 " S sl 3/@=Ve1) —s-vo1

Thus, Eq. (7) and Eq. (8) are mutually identical, therefore, last system of equations can be written as

{(8 —91)z,.+3V3z, = 0

Z3 = 0
Let, z, = t, where, tER, t£0 = z = 8_—3://_3_1t
Zq 8_3\/\2_11: 3\/§
Therefore, Z '= (22) = ¢ = For t= —(8 - \/9_1), weget, Z= —(8 — \/ﬁ) = 3V3i— (8 - \/9_1)j
3
0 0
Principal moment of inertia Principal axis Normalized principal axis
A= 20« X =k L=i

A2 =110 +V91)a Y = 3V3i = (8+V91)j pL [3V3i— (8 + vo1)j]

182 + 16v91
A3 =(10 —V91)a Z = 3v3i — (8=4/91)j 7 o 1 [3v3=(8 — vo1)j]

{182 + 16491

Problem: Determine the (direction of)-principal axes and corresponding principal moments of inertia of a uniform
solid hemisphere at a point on its rim.

Solution: Let M, a'and p, respectively, be the mass, radius of the base and volume mass density of a uniform solid
hemisphere. Let 4, 0 and C, respectively, be point on the rim, centre of the*base and centre“of mass of the
hemisphere. Choose three coordinate axes Axyz, Ox'y'z" and

Cx"'y"z'" as shown in the figure. z

As we know that, the moments and product of inertia with z

[N .

respect to coordinate system= Ox'y'z’ are given =by
2

lp11 = lo22 = lp33= gMaz and lo12 = lp23 = Ip13.=0.

Therefore, the=inertia matrix with~respect to coordinate

system Ox'y’z"isgiven by
2

= Ma? 0 0
Iorx lo1z lois /5 5 \
o] = (Ioij) = o1z lo22 o2z | = 0 EMGL2 0
To1z lo2z  loss 0 0 éMaz X

Next, we apply. parallel axis theorem in tensor notatioen to find inertia tensor [I.] with respect to coordinate
system Cx''y" z'";as follows
— 2
IOij = ICij + MI'C 61] — chrixcrj

= ICij = IOU — Mrgé‘” + ch,ixcjj
Icwn Jciz Icas lp11. lo1z lo13 7 0 0 Xc1Xe1 XcaXe2 XciXce3
= <Ic1z Ic22 Icz3> = (1012 o2 1023) -M[O0 r2 0 |+M (xc.lxc,Z Xe2Xc,2 x6.2x6,3>,
Icag Icoz Ic3s loiz. lo23 o33 0 0 r? Xc1Xe3  Xc2Xc3 | X 3Xc3

3\ . o : :
where, 1, = (xc,l, Xc2) xclg) = (0, 0, Ea) is the position vector of centre of mass C with respect to coordinate

system Ox'y'z".
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Moment of Inertia

M 0 ? 2 0 0
gMa’ 64 ¢ 00 0
Ieir Ierz2 1C13 9 0 0 0
= |(lciz le22 1c23 —Ma 0 -M 0 aaz 0 +M 9
Ieiz Iczz Iess \ 2 / \ 9 / 0 O aaz
0 —Ma? 0 0 —a?
54 64

/ZMaZ——Ma 0 0 \ 8 yaz 0 0 \

Ici1 Ader2. Ici3 5 5 . 320 o
= [I¢] = <Ic12 Ic2z 1623> | 0 5 z—aMaz 0 | = %Maz o |
lexs JTzg sz 0 0 2Ma? —Ma2+—Ma2/ \ 0 0 gMaZ/

Now, we apply parallel axis theorem in tensor notation to find inertia tensor [I;] with respect to coordinate system
Axyz, as follows

IAl] = ICL] + Mrc ij —

Iyyr Iaaz Tass Iei1 Igiz leas xé,lxé,l XeaXeo  XeaXes
= <1A12 Liz2 IA23> = <Ic12 iy IC23> + M M| xG1%es  XiaXeo  XesXes )
Iy1z Tazz | Ia33 Ic1s Ieaz ess XeiXe3 XeaXes XezXes
where, 1, = (xé,l, Xe1) xé,l) = (0, a, Za) is the position-vector of centre-of ' mass C with respectto coordinate
system Axyz.
83 M 0 0 73 0 0 0 0 0
L R 3201 64" / 3 \
A1l A12 Al13 83 73 0 a2 _a2
= | laz Tazz a2z | = 0 ——Ma? 0 +M| 0 —a? 0 [—M]| 8 |
i i I 320 64 3 9
413 a2z la33 2 2
0 0 Zumg 0 0 DBz 59 @¢
5 & 64"
5 Ma? + 2 ma? 0 0
Inn Wiz 1 ( 320" "o \
a11 laiz laas
| 83 ., 73 , 3 |
(o] =(la12 lazz la2z | = 0 ——Ma? + —Ma? — Ma ——Ma
i 320 64 8
A13._la23z 1433 3 2 73 9
0 ——a? —Ma? + — Ma?.— — Ma?
8 5 64 64
/ Ma? 0 \
562 0 0 1
[I4] = gMa ——Ma? |=1{.0 16a —15a), where, «a =EMa2
8 0-"—15a 56a
0 —§Ma2 gMaz
To find the eigenvalues, we have the characteristic equation det([l,] — A[I5]) = 0, where [I3] is unit matrix of order
3.
56a - 1 0 0
det([I] =4lz)) =0 = 0 16a—1 =15a [=0
0 —15a 56a-—1

On expanding by first row, we get,
(56 — D)[(16a=2)(56a — 1) — (=15a)?] =0 = (20a— 1)[896a? — 16al~ 56al + A1? — 225a*] =

= (56a — )[A2'=72a1+ 671a?] =0
Either 56a=4=0 = A1 =56« or, A2 —72ad+671a%=0 = A= 72ai\/(72a;2(;)4(1)(671a2)
- J= 72a+V5184a?-2684a%< 72a+V2500a? _ 72a+50a
2 2
=M= 720:-;—500: ) 72a;50a — 122205 ’ Zza — 616{ 11a
Thus, A ="56q, A, = 61a; and A3 = 1Te.

These eigenvalues gives principal moments of inertia an A. To find the direction of corresponding principal axes,
we find eigenvectors corresponding to each eigenvalue.
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Mechanics made easy Moment of Inertia

X1
For A, = 56a: Let X = <x2> be the required eigenvector corresponding to eigenvalue 1; = 56«, then
X3

56a — 56a 0 0 X1 0 0 0 0 X1
(L] —MDX=0 = ( 0 16a — 56a —15«x ><x2> = (0) = (0 —40«x —150() <x2> =
0 —15a 56a — 56a/ \X3 0 0 —15« 0 X3

g

—40axy=— 15ax3 =0 8x; —3x3=0 —="———— D
{ “15ax,=0 | { X, =0 4 —%— —— 2)
Thus we have, x, =x3 =0 and x; =r, where, r€R, r# 0
X1 r 1
Thus, X=<Xz>:<0>, = For r =1, we get, X=<0)=i+0j+0k=i
X3 0 0
1
For 4, = 6la:letY = (h) be the required eigenvector corresponding to eigenvalue 1, = 61«, then
V3

56a — 61a 0 0 Y1 0 —5a 0 0 V1 0
(] =4 [EDYr=0 = ( 0 16a —6la  —15a ><3’2> = (0) = < 0 —45a —15a> (3@) = (0)
0 —15«a 56a—="61a/ \V3 0 0 —15a —5a/ \V3 0
=5ay; =0 y1=0 —0
= {—45ay2—15ay3=0 = {3312 +y;=0 = {3 +y1 _ 0
—15ay, —Say; =0 3y, +y; =0 Y2 Y5 =
Let, y, =s, where, seR, s#0 = y3 = —3s

Y1 0 0
Thus, Y=[Y2|=| s = For s =1, we get, Y=11]=0i+j-3k=j-3k

V3 —3s -3
Z
For Az =11a:letZ = (Zz> be the required eigenvector corresponding to eigenvalue 1; = 11q, then
Z3

56a — 1la 0 0 21 0 45a 0 0 Z 0
(L] - 12[13])2 =0 = ( 0 l6a — 11a —15a ><22> = (0) = ( 0 S5a —15a> <22> = (0)
0 —15a 56a — 11a/ \Z3 0 0 —15a 45« Z3 0
—45az, =0 z1=0 7 =0
= { Saz, — 15az; = 0 = {22—323=0 = {z _321_0
—15az, + 45az; = 0 Z, — 323 =0 2 37
Let, zz =t, where, tER, t#0 = z, = 3t

Zy 0 0
Thus, Z = <Zz> = <3t> > For t =1, weget, Z = (3) =0i+3j+k=3j+Kk
Z3 t 1
Principal moment of inertia Principal axis Normalized principal axis
2= 6la Y =j=3k Y = (1/¥10)( - 3k)
A3 = 11a Z=3j+k Z = (1/V10)Bj+ k)

Definition: Two.distributions of matter are said to be “equimomental” if they.have the same moment of inertia
about any line in'spase.

Theorem: Two'systems S; and S, are equimomental if and only if the following three conditions are'satisfied,

(i) they have same mass,

(i7) they have same centre of mass, and

(iii) they have same principal axes/and principal moments of inertia at centre of mass.

Proof: Suppose that two systems S; and S, are equimomental. We will show that conditions (i), (ii) and (iii) are
satisfied.

(i) Let M; and M,, respectively, be the masses of the systems S; and S, and C; and C,, respectively, be their centres
of mass. Since the systems are supposed to be equimomental, therefore their moments of inertia about any line
should be same. In particular, their moments of inertia about line [ through C; and C, should also be same, say, I;.
Let I’ be any line parallel to [ and d be the perpendicular distance between [ and I'. Further suppose that I}/ be the
common moment of inertia of both systems about line ['.

Prepared by: Dr. Amir Mahmood Page 6



Mechanics made easy Moment of Inertia

By parallel axis theorem, we have, ]
Iy =1+ Myd*> (forsystemS;) — ————- (1) ’ S, 3
Iy =1, + Myd?  (for system S,) — — — ——— (2) ' l
From equations (1) and (2), we have, C, G ¢

I+ Md?>=1,+M,d*> = M, =M,=M (say)
= masses of both systems are same== condition (i)is'satisfied.
(ii) Now, let l-and [,, respectively, bethe lines through €yand €, and
perpendicular to line . Let common moment of inertia of each system about line'l; be [;, and aboutline [; be I, .

By parallel axis theorem, moment of inertia of system S; about [, is

I, = I, + M|CG|* ——— = — = - (3)
Again, by parallel-axis theorem, moment of inertia of system:S, about [, is 0 0,
Ly =1, — M|C,CofPmi— — — — — - (4)

From equations«(3) and (4), we get K 5. \
I, + M|C,C, |5 =T}, — M|C,C,|* =(1C1C,l =0 = € £C, =C (say) ; 0
= centres of mass of both systems are same = condition (ii) is satisfied. \51 f y
(iii) Since both system have same centre of mass C and'same mass M,
Therefore, they both have same_momental ellipsoid at.C.. Hence, they have same principal axes.'and principal
moments of inertia at centre of mass'€.. = condition (iii)-is satisfied.
Conversely, suppose that for tworsystems S; and S,, conditions (i), (ii) and-(iii) are satisfied.-We.will show that
both systems are equimomental.
Let C and M, respectively, be the common centre of mass.and common
mass of both'systems. Further let'thatlj, I, and I3 be the'common principal
moments of inertia about common principal axes at centre of mass C. In
figure, common principal axes at C ‘are shown by Cartesian coordinate
system Cxyz.
Let [ be an arbitrary line in space..Draw a line I’ through C parallel to [.
Then the moment of inertia of each system about !’ is given by

Iy = A% + Lp? + I3v?,
where, A, 4 and v are direction cosines of line I'. Now, by using parallel axis theorem, the moment of inertia of each
system about line [ is given by

I, =1y + Md? = LA* + Lp? + ;v + Md?,
where, d is the perpendicular distance between lines ['andI”. Since the momentof inertia of both'system about an
arbitrary line [ in space is same. This shows that both systems §; and S, are equimomental.
Problem: Show. that a hoop of mass.m and radius a/v2 is equimomental with.a circular plate of mass m radius a.

Proof: The moment of inertia of a cireular hoop (or ring).of mass m and radius-@/v/2 about an axis through its
2 1

centre and perpendicular to its plane is LL=m (%) = Emaz.

The moment of inertia of a circular plate (or disc) of mass m and radius a about an axis through its centre and

. : . 1
perpendicular;to its plane is I, = Emaz.

Since, both moments of inertia are same. Therefore both.systems are equimomental.
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Mechanics made easy Moment of Inertia

Problem: Find the (direction of) principal axzes and principal moments of inertia
of a (uniform) solid hemisphere of mass M at centre of the its base.

A

y-axis

Solution: Moments of inertia:
Let M, a and. p, respectively, be the mass, radius and volume mass density of the hemisphere.
Choose coordinate axes as shown-in-figure.
Moment of inertia of typical volume element of hemisphere, with mass dm and volume dV,
about z-axis is given by

dl.. = (2* + y*)dm

Thus, moment-of inertia of hemisphere about z-axis is

I = / (2 + y*)dm,
Hemisphere

= p/n - (1‘2 + y2) drdydz op= % s dz(ggdz S
emisphere
3M 5 . — '
s 3 (y° + #°)dedy dz op= L (for hemisphere)
2ma Hemisphere 3

To make theseomputation simplersswe transform thesproblem from Cartesian coordinates to
spherical coordinates (r, 6, ¢) by-using

r = rsinfeoso, y = rsinésing, 2z = rcost

dV = dz dydZ = dr (rdf) (rsin do) = r*sin 6 dr d6 dd

x? 4 y* = r?(sin® @ cos® g + sin® fsin? ) = 1¥sin” (cos® ¢ + sin’@) = 2 sin’ §

For hemisphere : U <r<a, 06 < 7/2, 0<p<2rm

3IM /2 27 . 3IM /2 X 27
La ) / / / r*sin® 6 dr df dg = ~ rdr sin® 0 df / do (1)
2 r=0J0 ¢=0 2ra 0=0 ¢=0
Where,
w/2 1 /2 7
/ sin®9do = / (3sin @ — sin 30) | sin 30'= 3 sin § — 4sin® 6’|
=0 4 Jo=o

1 1 T2 101\ 2
4< 3C080+§COS39) ‘9_021(3—5) P (2)
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Mechanics made easy Moment of Inertia

3M [(a® 2 2
2= Al = 2 = = #
. 2mad (5) (3) i) 5]\/[&

3M ‘
Hemisphere

271'(1, Hemisphere

Using (2) in (1), we get
Now,

Transforming problem in spheri¢al coordinates (r, 6, ¢), we get

3M w/2 2w
o / / / ri(sin® 6 sin? ¢ + cos®@sin 0)dr df de
r=0J 0= =

27m

3IM ; /2 ‘ 27 /2 27
= - / rtdr / sin® 0 d6 / sin®¢rde + / cos” 0 sinfdd / do (3)
27I‘a r=0 0-=0 $=0 J =0 =0

Where,

/QW'Qd—l Zﬂ(l 2d—1( 1'2>|27T — (27) = (4
A 51n¢¢—§/¢ =08 2¢) q5—§ d)—ismqﬁ ¢:0—5(ﬂ)—w )

=0 =0,

and

w/2
/ ¢o8%0 sin df =
0

Using (2), (4) and (5), (3) gi_ves

L2 M (@[T o) _ M@ (1x) e,
2ma® \ 5 3 3 2mra’™\ 5 3 5

Products of inertia:
Iry:—/ rxydm = 3/ zydV
Hemisphere 2na Hemisphere

]\/[ 71'/2 27\'
- 3 / / / r* sin? @ sin ¢ cos ¢ drdf do
r=0J0 =0

; 7r/2 2T
_ 3]\{ / 4 4 / sinZ6.do / sin ¢ cos ¢ d¢
r=0 Jo J¢

=3 (5)

2mad -0 =0
But
27 1
/ sin ¢ cos ¢ dgp.= =0 = Il
=0 2
Now,
M
Imzz—/ Tz zdm = = 3/ rydV
Hemisphere 2ma Hemisphere
M a
- 23 3/ / / r sitt®eos 0 cos ¢ dr df de
ma r=0 J o=
3M /2 2
= 3/ r4dr/ sm@cosOdH/ cos ¢ do
 27ma 0= =0
But
2w 271'
/ cospde = sin o $=0 =0 = I, =0=1,, . I, = I, (by symmetry)
=0
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Mechanics made easy Moment of Inertia
Thus,

Izy = I;L'z = I'yz =0

The inertia matrix with respect to coordinate system Ozyz is given by

IMa*> AL 0
[To).= 0 M) 0
0 0 %]\/l a*

Since, all products of inertia are/zero, therefore coordinate axes shown in the figure are required
principle axes and corresponding moments of inertia I, = I, = I., = %]\I a? are principal mo-
ments of inertia.

Problem: Find the (direction of ) principal axes and principal moments of inertia
of a (uniform) solid sphere of mass M at its centre.

<

Solution: Moments of inertia:
Let M, a and p, respectively, be the mass, radius and volume mass density of the sphere.
Choose coordinate axes as shownyin figure.

Moment of inertia of typical volume element of sphere; with mass dm and volume dV, abeut
z-axis is given by
dl., = (2* + y*)dm

Thus, moment of inertia of sphére about z-axis is

I.= / (IQ + yQ)dTI"L
Sphere

=3 ,O/S ) (.772 s yZ) dedydz rop= ?iL\'/] . dm(g;dz NP——
phere
3M
" indd / (y? + 2%) dz dy dz " p= 15 (for sphere)
Ta Sphere 3
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Mechanics made easy

Moment of Inertia

spherical coordinates (r, 0, ¢) by using

x =rsinf cos ¢,

For sphere :

SM

ZZ
27ra3

Where,

™ . 1 ™
/ sin?4df = ~ / (3 sin#= sin 360)
=0 4 Jo=o

Thus,
IZZ

Similarly,

2
g = Iy = —Mad?
5
Products of inertia:

L

— / zydm =
Sphere

y = rsin @ sin ¢,

0 <r<a,

/ / / r sin® 0 dr df d¢ =
r=0 J0=0 J =0

To make the computation simpler, we transform the problem from Cartesian coordinates to

& =

dV = dz djdzs dr (rdf) (rsii@dd) = r* sin 0 dr'ad@as
22 4oy = r*(sin? 6 cos® g sin” O sin? ) = r*sin® §(cos® ¢ + sin®e), = r*sin” f

0 <8<, 0

r
7ra,3 /

rcosf

< ¢ <21

27
Ldr / sin® 6 d6 /
0=0 =0

do

| sin 30 =3sinf — 4sin30|

1 1 T 1 1 1 4
= Z (—3COS€+§COS39) |9:0 = Z [(3— g) - (—3+§>jl = 5

8M (a (4 2
= — | | = |=liem) = — Ma?
47ra3(5>(3>(7r) 5

) I:l;:z: C Iyy =1I..

(by“symmetry)

4ra

5 / xydV
Sphere

ments of inertia.

= SAE / / / rt sin®@sin ¢ cos ¢ dr df d¢
~ 4md® 7=0 J 6=0
3M:
= / r dr/ sin 0d0/ sin ¢ cos ¢ d¢
 27d3 0=0 $=0
But
27 . 1 e | 27‘(
/:051n¢cos¢d¢:§sm 10} qb:O:O = I=0
Similarly,
Ly, =1I1;,=0 Y Ly = = Isz (by sygmietry)
The inertia matrix with respectto coordinate system Oxyz is given by
%]\/[ a? 0 0
[Io'= 0 2Ma*> 0
0 0 %]V[ a?

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required
principle axes and corresponding moments of inertia [,

=5

vy

ex T

2Ma? are principal mo-
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Mechanics made easy

Moment of Inertia
Problem: Find the (direction of) principal axes and principal moments of in-
ertia of a (uniform) solid ellipsoid

of mass M at-its centre.

Solution: Moments of inertia:

Let M and p, respectively, be the mass and volume mass density of a uniform solid ellipsoid
defined by
2y 22

o — 1
a2 "B e
. Choose coordinate axes as shown in figure.

Moment of inertia of typical voluune element of ellipsoid, with mass dm and volume dV', abeut
z-axis is given by

dI,, = (2% + 1y
Thus, moment-of inertia of ellipsoid about z-axis is

1., = / (1:2 + y*)dm
Ellipsoid

:p/ (z% + y?) dovdefdz
Ellipsoid
3M . =
= z)dxdyd
drabe Lp}lere(y - ) e Y

5 _dm _ _dm __
= 55 = s — constant

- p= gﬁ (for ellipsoid)

- / (22 + ?)dm (6)
Ellipsoid
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Mechanics made easy

Moment of Inertia

Let us substitute
wla=x', wh=y' gle=3z"

= dzja=dz’, dy/b=dy’, dzle=4ds’, dedydz=abeds'dy’dz

Under the.above transformation,.the given ellipsoid.is transformed.into.the unit sphere

S:z?+y” pml =1.

3M
[zz: 2//2 o 42 b d /d/ /
47rabc/5(aT +b%y “)(abedr’ dy.dz)

M
= 34_7r S(aQac'2 + b*y"™)d2’ dy' 42’
/ z"dz’ dgfld?’ = / y"2da’ dyld2’ (by symuietry)
s s

3M(a® + b2
dy — (——)/x'2dm' dy’ dzf
A7 S
To make the*eomputation simpler; we transform the problem from Cartesian coordinates<(x’,
y’, z') to spherical coordinates.(z, 6, ¢) by using
x' =rsinfeos, y' =rsinbsing, 2z’ =rcosf

dV = dz' dytdz’ = dr (rdf) (rsinfd do) = r*sin 0dr.dl do

For unit sphere,
0 << 1, 0<0 <=, 0<o<2r

3M 2 b2 1 T 2 )
= Joy= M/ / / r4sin300032¢drd0d¢
Ar r=0J6=0 J $p=0

2m

M 2 b2 1 ™
— 3Mal + %) / ridr / sin® 6 d6 cos®¢ do
47 =0 6=0 =0

s 1 K
Where, / sin® @ df = 1/ (3sinf — sin 36) "+ sindf = 3sind — 4sin’@
=0 =0
1 1 |7T 1 1 1 4
—Z(—3COSH—|—§COS39> QZO_Z[<3_§) — (—3+§>] =5
and
/%co T dé = 1/%(1+cos2¢)d¢>— Mo Langg) o= Lam) =
N iaarth =gl 2 I =500 =
SV +b?) [1\of & S
zz ¥ = o =-M
= ] g =1z () E (@° +0%)
Similarly,
Lo = é.M(b2 + ) and Ly = %.M(a2 +c2)
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Mechanics made easy Moment of Inertia

Products of inertia:

3M
= Imy:—/ zydm = — / xydV
Ellipsoid drabe Ellipsoid

1
= — 3/ /(abx'y')(abcdx'dy'dz')
S

ATabc
M
= — 302 /:r'y'd:v'dy'dz'
4 S
1 ™ 2T
= — 3abM/ / / rt sin? @ sin ¢ cos@dr d do
4t r=0 J =0 J =0

bAf 1 T 2
Iy = — 3a / rtdr / sin® 0 d6 sinicos ¢ do
47 r=0 Jo=0 $=0

But
T [0) ¢dq§—1 '2¢|2 ==if] Ly =10
/¢ S111 @ COS 2Sln ¢_0 Yy

=0

Similarly, «t-is-not difficult to-shew that

The inertia.matrix with respect to coordinate System Ozyz is given by

LM + ) 0 0
[To] = 0 LM+ ) 0
0 0 M (a?4%?)

Since, all products of inertia are zero, therefore coordinate axes shown in the figure are required
principle axes and corresponding moments of mertia  I,,, I,; and I,, are principal
moments of inertia.
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