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𝐿1 = 𝜆𝜔1,       𝐿2 = 𝜆𝜔2,        𝐿3 = 𝜆𝜔3  − − − − −−−→ (1) 
           (𝐿1𝐿2𝐿3) =  (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33)(𝜔1𝜔2𝜔3) −− −−−−−→ (2) 𝐼11𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 𝜆𝜔1𝐼12𝜔1 + 𝐼22𝜔2 + 𝐼23𝜔3 = 𝜆𝜔2𝐼13𝜔1 + 𝐼23𝜔2 + 𝐼33𝜔3 = 𝜆𝜔3 

(𝐼11 − 𝜆)𝜔1 + 𝐼12𝜔2 + 𝐼13𝜔3 = 0𝐼12𝜔1 + (𝐼22 − 𝜆)𝜔2 + 𝐼23𝜔3 = 0𝐼13𝜔1 + 𝐼23𝜔2 + (𝐼33 − 𝜆)𝜔3 = 0} − − −−−−−→ (3) 

Definition: A set of three mutually perpendicular axes having origin 𝑂 which are fixed in the rigid body and 

rotating with it and which are such that the product of inertia with respect to them are zero are called “principal 

axes of inertia” or simply “principal axes” of body at point 𝑂. 

Definition: An axis is called “principal axis of inertia” or simply “principal axis” of a rigid body if directions of 

angular momentum 𝐋 and angular velocity 𝛚 are same, when rigid body is rotating about this axis.  

[ 𝐈 ] = (𝐼11 0 00 𝐼22 00 0 𝐼33) 

 ⇒    𝐋𝑥 = 𝐼11𝛚𝑥 

Theorem: Above two definitions of principal axes are 

equivalent.  

Proof: Suppose that for a rigid body we have three 

mutually concurrent and mutually perpendicular axes for 

which first definition holds. Choosing these axes as 

Cartesian coordinate axes, the inertia matrix with respect 

to this coordinate system is given by 

If rigid body rotates about  𝑥 − axis, then its angular 

velocity has the form  𝛚𝑥 = (𝜔𝑥100 ) 

As we know that  [𝐋𝑥] = [ 𝐈 ][𝛚𝑥]  ⇒   (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (𝐼11 0 00 𝐼22 00 0 𝐼33)(𝜔𝑥100 ) = (𝐼11𝜔𝑥100 ) =
𝐼11 (𝜔𝑥100 )    
This shows that angular momentum is parallel to angular 

velocity. Similarly, we can show that when body rotates 

about 𝑦 or 𝑧 axis then angular momentum is parallel to 

angular velocity. Hence second definition also holds for 

given axes. 

⇒     𝐋𝑥 = λ1𝛚𝑥,        where λ is constant ⇒     𝐿𝑥1𝐢 + 𝐿𝑥2𝐣 + 𝐿𝑥3𝐤 = λ1(𝜔𝑥1𝐢 + 0𝐣 + 0𝐤) ⇒     (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (λ1𝜔𝑥100 ) − − −−→ (1) 
⇒   (𝐿𝑥1𝐿𝑥2𝐿𝑥3) = (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33)(𝜔𝑥100 )= (𝐼11𝜔𝑥1𝐼12𝜔𝑥1𝐼13𝜔𝑥1) − −−→ (2) 

(λ1𝜔𝑥100 ) = (𝐼11𝜔𝑥1𝐼12𝜔𝑥1𝐼13𝜔𝑥1) ⇒        𝐼12 = 𝐼13 = 0           ∵    𝜔𝑥1 ≠ 0 

Conversely, suppose that for a rigid body we have 

three mutually concurrent and mutually 

perpendicular axes for which second definition holds. 

Choosing these axes as Cartesian coordinate axes, and 

assuming that body rotates about  𝑥 − axis, we have, 

by supposition, angular momentum and angular 

velocity are parallel 

As we know that     [𝐋𝑥] = [ 𝐈 ][𝛚𝑥] 

From (1) and (2), we have 

Similarly, assuming the rotation of body about 𝑦 − 
axis (𝐋𝑦 = λ2𝛚𝑦), we get,  𝐼12 = 𝐼23 = 0. ⇒ All product of inertia are zero. Hence first definition 

also holds for given axes.  (Note: λ𝑖 = 𝐼𝑖𝑖,   𝑖 = 1,2,3) 

Definition: The moment of inertia with respect to a principal axis is called “principal moment of inertia”. 
Theorem: Prove that for a rigid body a set of three mutually perpendicular principal axes exists at given point. 

Proof: As we know from the definition of principal axis that if a rigid body rotates bout principal axes, passing 

through a point 𝑂, then the angular momentum 𝐋 and the angular velocity 𝛚 of the body are in same direction. So 

we can write,            𝐋 = 𝜆𝛚,               where,   𝜆 is  constant Let,                               𝐋 = 𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤,                            𝛚 = 𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤            Then,                                                                𝐿1𝐢 + 𝐿2𝐣 + 𝐿3𝐤 = 𝜆(𝜔1𝐢 + 𝜔2𝐣 + 𝜔3𝐤)            
Comparing corresponding components on both sides of above vector equation, we get 

As we know that,                                                            [𝐋] = [ 𝐈 ][𝛚] 
From (1) and (2), we get, 

This system can be written as, 

This is homogeneous system of three equations in three unknowns 𝜔1, 𝜔2 and 𝜔3. This system will have non 
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|𝐼11 − 𝜆 𝐼12 𝐼13𝐼12 𝐼22 − 𝜆 𝐼23𝐼13 𝐼23 𝐼33 − 𝜆| = 0 

𝐼𝑦𝑦 = 𝐼22 = 𝐼𝐷𝐸 +𝑀|𝑂𝐷|2 = 16𝑀𝑎2 +𝑀(𝑥˗coordinate of centre of mass 𝐶)2 = 16𝑀𝑎2 +𝑀(0 + √3𝑎 + √3𝑎3 )2
= 16𝑀𝑎2 +𝑀(2√3𝑎3 )2 = 16𝑀𝑎2 + 43𝑀𝑎2 = 𝑀𝑎2 + 8𝑀𝑎26 = 96𝑀𝑎2 = 32𝑀𝑎2 

trivial solution if an only if 

 

This is cubic equation in 𝐼 which is called characteristic equation of inertia matrix [ 𝐈 ]. It has three roots, say,  𝜆1, 𝜆2 and 𝜆3, which are, in fact, principal moments of inertia. By substituting 𝜆 = 𝜆1in system (3), we can obtain the 

ratios  𝜔1: 𝜔2: 𝜔3, which give  direction of principal axes  relative to which moment of inertia is  𝜆1. Similarly, we 

can find direction of other two principal axes corresponding to moments of inertia 𝜆2 and 𝜆3. We can always find 

three mutually perpendicular principal axes because [ 𝐈 ]  is symmetric. This shows that there exists three mutually 

perpendicular principal axes passing through given point 𝑂. 

Problem: A triangular plate is made of uniform material and has sides of lengths 𝑎, 2𝑎 and √3𝑎. Determine the 

(direction of) principal axes and corresponding principal moments of inertia at 30o corner (or vertex).  

Solution: Let 𝑀 and 𝜎, respectively, be the mass and surface (areal) mass density of triangular plate 𝑂𝐴𝐵 lying in 𝑥𝑦-plane, as shown in the figure, with |𝑂𝐴| = √3𝑎, |𝐴𝐵| = 𝑎 and |𝑂𝐵| = 2𝑎. 

Clearly,      |𝑂𝐵|2 = (2𝑎)2 = (√3𝑎)2 + 𝑎2 = |𝑂𝐴|2 + |𝐴𝐵|2. 

This shows that 𝑂𝐴𝐵 is right angled triangle with right angle at  𝑂. 

Furthermore, tan(𝑚 ∠𝐴𝑂𝐵) = |𝐴𝐵||𝑂𝐴| = 𝑎√3𝑎  ⇒   𝑚 ∠𝐴𝑂𝐵 = tan−1 ( 1√3) = 30o. 
Thus, we have to find principal axes and corresponding principal 

moments of inertia at vertex 𝑂. The moment of inertia of triangular 

plate about side 𝑂𝐴 (𝑥-axis)is given by 

                               𝐼𝑥𝑥 = 𝐼11 = 𝐼𝑂𝐴 = 16𝑀|𝐴𝐵|2 = 16𝑀𝑎2  

The moment of inertia of triangular plate about side  𝐴𝐵 is given by 

         𝐼𝐴𝐵 = 16𝑀|𝑂𝐴|2 = 16𝑀(√3𝑎)2 = 12𝑀𝑎2  

Let 𝐶 be the centre of mass of the plate and take 𝐷 on 𝑂𝐵 and 𝐸on 𝑂𝐴 such that 𝐷𝐸 is passing through 𝐶 and parallel to 𝐴𝐵. 

Then moment of inertia of plate about 𝐷𝐸 is given by (using parallel axis theorem), as follows:        𝐼𝐷𝐸 = 𝐼𝐴𝐵 −𝑀|𝐴𝐷|2 = 12𝑀𝑎2 −𝑀|𝐴𝐷|2 −−−−−−→ (1)  
From figure,        |𝐴𝐷| = |𝑂𝐴| − |𝑂𝐷| = √3𝑎 −(x-coordinate of centre of mass C) = √3𝑎 − 13 (𝑥𝐴 + 𝑥𝐴 + 𝑥𝐴)  = √3𝑎 − 13 (0 + √3𝑎 + √3𝑎) = √3𝑎 − 2√3𝑎3 = 3√3𝑎−2√3𝑎3 = √3𝑎3 = 𝑎√3−−→ (2)  
Using (2) in (1), we get,              𝐼𝐷𝐸 = 12𝑀𝑎2 −𝑀( 𝑎√3)2 = 12𝑀𝑎2 − 13𝑀𝑎2 = 3𝑀𝑎2−2𝑀𝑎26 = 16𝑀𝑎2 

Then moment of inertia of plate about 𝑦-axis is given by (using parallel axis theorem), as follows, 

Then moment of inertia of plate about 𝑧-axis is given by (using perpendicular axis theorem), as follows, 𝐼𝑧𝑧 = 𝐼33 = 𝐼𝑥𝑥 + 𝐼𝑦𝑦 = 16𝑀𝑎2 + 32𝑀𝑎2 = 𝑀𝑎2+9𝑀𝑎26 = 106 𝑀𝑎2 = 53𝑀𝑎2  𝐼𝑥𝑦 = 𝐼12 = −∫𝑥𝑦 d𝑚 = −𝜎∫𝑥𝑦 d𝑥d𝑦 = −𝜎 ∫ (∫ 𝑥𝑦 d𝑦𝑥√3𝑦=0 )d𝑥√3𝑎𝑥=0 = −𝜎∫ (𝑥 (𝑦22 )|𝑦=0𝑥√3 )d𝑥√3𝑎𝑥=0      ∵ d𝑚 = 𝜎d𝑥d𝑦         = − 𝜎6 ∫ 𝑥3d𝑥√3𝑎𝑥=0 = − 16 ( 2𝑀√3𝑎2) (𝑥44 )|𝑥=0√3𝑎 = − 16 ( 2𝑀√3𝑎2) (9𝑎44 ) = − √34 𝑀𝑎2          ∵  𝜎 = 𝑀12|𝑂𝐴||𝐴𝐵| = 𝑀12(√3𝑎)(𝑎) = 2𝑀√3𝑎2 
As 𝑧 = 0 in 𝑥𝑦-plane, therefore,     𝐼𝑥𝑧 = 𝐼13 = −∫𝑥𝑧 d𝑚 = 0  and  𝐼𝑦𝑧 = 𝐼23 = −∫𝑦𝑧 d𝑚 = 0  

The inertia matrix at point 𝑂, with respect to coordinate system 𝑂𝑥𝑦𝑧, is given by 

[𝐈𝑂] = (𝐼11 𝐼12 𝐼13𝐼12 𝐼22 𝐼23𝐼13 𝐼23 𝐼33) = ( 
 16𝑀𝑎2 − √34 𝑀𝑎2 0− √32 𝑀𝑎2 32𝑀𝑎2 00 0 53𝑀𝑎2) 

 = ( 2𝛼 −3√3𝛼 0−3√3𝛼 18𝛼 00 0 20𝛼) ,      where     𝛼 = 112𝑀𝑎2  

P
re

pa
re

d 
by

: D
r.

 A
m

ir 
M

ah
m

oo
d

P
re

pa
re

d 
by

: D
r.

 A
m

ir 
M

ah
m

oo
d

P
re

pa
re

d 
by

: D
r.

 A
m

ir 
M

ah
m

oo
d

P
re

pa
re

d 
by

: D
r.

 A
m

ir 
M

ah
m

oo
d

P
re

pa
re

d 
by

: D
r.

 A
m

ir 
M

ah
m

oo
d



Mechanics made easy   Moment of Inertia 

Prepared by: Dr. Amir Mahmood Page 3 

 

det([𝐈𝑂] − 𝜆[𝐼3]) = 0   ⇒    |2𝛼 − 𝜆 −3√3𝛼 0−3√3𝛼 18𝛼 − 𝜆 00 0 20𝛼 − 𝜆| = 0 

⇒     {−18𝛼𝑥1 − 3√3𝛼𝑥2 = 0−3√3𝛼𝑥1 − 2𝛼𝑥2 = 0      ⇒      {6𝑥1 + √3𝑥2 = 0  − − − −−−(3)3√3𝑥1 + 2𝑥2 = 0  − − − − − (4) 

([𝐈𝑂] − 𝜆2[𝐼3])𝑌 = 𝟎      ⇒        (−(8 + √91)𝛼 −3√3𝛼 0−3√3𝛼 (8 − √91)𝛼 00 0 (10 − √91)𝛼)(
𝑦1𝑦2𝑦3) = (000) 

⇒     { −(8 + √91)𝛼𝑦1 − 3√3𝛼𝑦2 = 0−3√3𝛼𝑦1 + (8 − √91)𝛼𝑦2 = 0                       (10 − √91)𝛼𝑦3 = 0        ⇒      {
(8 + √91)𝑦1 + 3√3𝑦2 = 0  − − − − −−(5)3√3𝑦1 − (8 − √91)𝑦2 = 0 − − − − − −(6)    𝑦3 = 0  

{(8 + √91)𝑦1 + 3√3𝑦2 = 0                                    𝑦3 = 0  

To find the eigenvalues, we have the characteristic equation det([𝐈𝑂] − 𝜆[𝐼3]) = 0, where [𝐼3] is unit matrix of 

order 3. 

On expanding by third row, we get,       (20𝛼 − 𝜆) [(2𝛼 − 𝜆)(18𝛼 − 𝜆) − (−3√3𝛼)2] = 0   ⇒    (20𝛼 − 𝜆)[36𝛼2 − 2𝛼𝜆 − 18𝛼𝜆 + 𝜆2 − 27𝛼2] = 0  ⇒ (20𝛼 − 𝜆)[𝜆2 − 20𝛼𝜆 + 9𝛼2] = 0  

 Either      20𝛼 − 𝜆 = 0 ⇒   𝜆 = 20𝛼 
or,      𝜆2 − 20𝛼𝜆 + 9𝛼2 = 0 ⇒   𝜆 = 20𝛼±√(20𝛼)2−4(1)(9𝛼2)2(1)  ⇒   𝜆 = 20𝛼±√400𝛼2−36𝛼22 = 20𝛼±√364𝛼22 = 20𝛼±2√91𝛼2   = (10 ± √91)𝛼  

Thus,          𝜆1 = 20𝛼,          𝜆2 = (10 + √91)𝛼,        and        𝜆3 = (10 − √91)𝛼   

These eigenvalues gives principal moments of inertia at point 𝑂. To find the direction of corresponding principal 

axes, we find eigenvectors corresponding to each eigenvalue. 

For 𝝀𝟏 = 𝟐𝟎𝜶: Let 𝑋 = (𝑥1𝑥2𝑥3) be the required eigenvector corresponding to eigenvalue 𝜆1 = 20𝛼, then 

([𝐈𝑂] − 𝜆1[𝐼3])𝑋 = 𝟎 ⇒ (2𝛼 − 20𝛼 −3√3𝛼 0−3√3𝛼 18𝛼 − 20𝛼 00 0 20𝛼 − 20𝛼)(𝑥1𝑥2𝑥3) = (000) ⇒ ( −18𝛼 −3√3𝛼 0−3√3𝛼 −2𝛼 00 0 0)(𝑥1𝑥2𝑥3) = (000)  

From Eq. (3), we have 𝑥1 = √36 𝑥2 and putting it in (4), we get,  −3√3(√36 𝑥2) − 2𝑥2 = 0 ⇒ − 32 𝑥2 − 2𝑥2 = 0 ⇒ 𝑥2 =0. Put 𝑥2 = 0 in (3),  we get,  𝑥1 = 0  Thus, 𝑋 = (𝑥1𝑥2𝑥3) = (00𝑟) ,    where,   𝑟 ∈ ℝ , 𝑟 ≠ 0        ⇒         For   𝑟 = 1, we get,    𝑋 = (001) = 0𝐢 + 0𝐣 + 𝐤 = 𝐤  

For  𝝀𝟐 = (𝟏𝟎 + √𝟗𝟏)𝜶: Let 𝑌 = (𝑦1𝑦2𝑦3) be the required eigenvector corresponding to eigenvalue 𝜆2 = (10 +√91)𝛼, then 

From Eq. (5), we have  
𝑦1𝑦2 = − 3√38 + √91  and from Eq. (6), we have   

𝑦1𝑦2 = 8 − √913√3 = 8 − √913√3 · 8 + √918 + √91 = −273√3(8 + √91) = − 3√38 + √91 

Thus, Eq. (5) and Eq. (6) are mutually identical, therefore, last system of equations can be written as 

Let,  𝑦2 = 𝑠,    where,   𝑠 ∈ ℝ , 𝑠 ≠ 0        ⇒        𝑦1 = −3√3 8 + √91 𝑠 

Therefore, 𝑌 = (𝑦1𝑦2𝑦3) = ( −3√3 8 + √91 𝑠𝑠0 )  ⇒  For   𝑠 = −(8 + √91),    we get,    𝑌 = ( 3√3−(8 + √91)0 ) = 3√3𝐢 − (8 + √91)𝐣 
For   𝝀𝟑 = (𝟏𝟎 − √𝟗𝟏)𝜶: Let 𝑍 = (𝑧1𝑧2𝑧3) be the required eigenvector corresponding to eigenvalue           
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([𝐈𝑂] − 𝜆2[𝐼3])𝑍 = 𝟎      ⇒        (−(8 − √91)𝛼 −3√3𝛼 0−3√3𝛼 (8 + √91)𝛼 00 0 (10 + √91)𝛼)(
𝑧1𝑧2𝑧3) = (000) 

⇒     { −(8 − √91)𝛼𝑧1 − 3√3𝛼𝑧2 = 0−3√3𝛼𝑧1 + (8 + √91)𝛼𝑧2 = 0                       (10 + √91)𝛼𝑧3 = 0        ⇒      {
(8 − √91)𝑧1 + 3√3𝑧2 = 0  − − − − −−(7)3√3𝑧1 − (8 + √91)𝑧2 = 0 − − − − − −(8)    𝑧3 = 0  

{(8 − √91)𝑧1 + 3√3𝑧2 = 0                                    𝑧3 = 0  

𝐼𝑂𝑖𝑗 = 𝐼𝐶𝑖𝑗 +𝑀𝐫𝑐2𝛿𝑖𝑗 −𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗  ⇒  𝐼𝐶𝑖𝑗 = 𝐼𝑂𝑖𝑗 −𝑀𝐫𝑐2𝛿𝑖𝑗 +𝑀𝑥𝑐,𝑖𝑥𝑐,𝑗 

𝜆3 = (10 − √91)𝛼, then 

From Eq. (7), we have  
𝑧1𝑧2 = − 3√38 − √91  and from Eq. (8), we have   

𝑧1𝑧2 = 8 + √913√3 = 8 + √913√3 · 8 − √918 − √91 = −273√3(8 − √91) = − 3√38 − √91 
Thus, Eq. (7) and Eq. (8) are mutually identical, therefore, last system of equations can be written as 

Let,  𝑧2 = 𝑡,    where,   𝑡 ∈ ℝ , 𝑡 ≠ 0        ⇒        𝑧1 = −3√3 8 − √91 𝑡 
Therefore, 𝑍 = (𝑧1𝑧2𝑧3) = (

−3√3 8 − √91 𝑡𝑡0 ) ⇒   For   𝑡 = −(8 − √91),   we get,     𝑍 = ( 3√3−(8 − √91)0 ) = 3√3𝐢 − (8 − √91)𝐣 
Principal moment of inertia Principal axis Normalized principal axis 𝜆1 = 20𝛼 𝑋 = 𝐤 𝑋̂ = 𝐢 𝜆2 = (10 + √91)𝛼 𝑌 = 3√3𝐢 − (8 + √91)𝐣 𝑌̂ = 1√182 + 16√91 [3√3𝐢 − (8 + √91)𝐣] 𝜆3 = (10 − √91)𝛼 𝑍 = 3√3𝐢 − (8 − √91)𝐣 𝑍̂ = 1√182 + 16√91 [3√3𝐢 − (8 − √91)𝐣] 

Problem: Determine the (direction of) principal axes and corresponding principal moments of inertia of a uniform 

solid hemisphere at a point on its rim. 

Solution: Let 𝑀, 𝑎 and 𝜌, respectively, be the mass, radius of the base and volume mass density of a uniform solid 

hemisphere. Let 𝐴, 𝑂 and 𝐶, respectively, be point on the rim, centre of the base and centre of mass of the 

hemisphere. Choose three coordinate axes  𝐴𝑥𝑦𝑧,  𝑂𝑥′𝑦′𝑧′  and  𝐶𝑥′′𝑦′′𝑧′′ as shown  in the figure.  

As we know that, the moments and product of inertia with 

respect to coordinate system 𝑂𝑥′𝑦′𝑧′ are given by                𝐼𝑂11 = 𝐼𝑂22 = 𝐼𝑂33 = 25𝑀𝑎2  and   𝐼𝑂12 = 𝐼𝑂23 = 𝐼𝑂13 = 0. 

Therefore, the inertia matrix with respect to coordinate 

system 𝑂𝑥′𝑦′𝑧′ is given by  

[𝐈𝑂] = (𝐼𝑂𝑖𝑗) = (𝐼𝑂11 𝐼𝑂12 𝐼𝑂13𝐼𝑂12 𝐼𝑂22 𝐼𝑂23𝐼𝑂13 𝐼𝑂23 𝐼𝑂33) = ( 
 25𝑀𝑎2 0 00 25𝑀𝑎2 00 0 25𝑀𝑎2) 

 
  

Next, we apply parallel axis theorem in tensor notation to find inertia tensor [𝐈𝐶] with respect to coordinate 

system 𝐶𝑥′′𝑦′′𝑧′′, as follows 

⇒  (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) = (𝐼𝑂11 𝐼𝑂12 𝐼𝑂13𝐼𝑂12 𝐼𝑂22 𝐼𝑂23𝐼𝑂13 𝐼𝑂23 𝐼𝑂33) −𝑀(𝐫𝑐
2 0 00 𝐫𝑐2 00 0 𝐫𝑐2)+𝑀(

𝑥𝑐,1𝑥𝑐,1 𝑥𝑐,1𝑥𝑐,2 𝑥𝑐,1𝑥𝑐,3𝑥𝑐,1𝑥𝑐,2 𝑥𝑐,2𝑥𝑐,2 𝑥𝑐,2𝑥𝑐,3𝑥𝑐,1𝑥𝑐,3 𝑥𝑐,2𝑥𝑐,3 𝑥𝑐,3𝑥𝑐,3), 

where, 𝐫𝑐 = (𝑥𝑐,1, 𝑥𝑐,2, 𝑥𝑐,3) = (0, 0, 38𝑎) is the position vector of centre of mass 𝐶 with respect to coordinate 

system 𝑂𝑥′𝑦′𝑧′.     Pr
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⇒  (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) = ( 
  
25𝑀𝑎2 0 00 25𝑀𝑎2 00 0 25𝑀𝑎2) 

  −𝑀
( 
  
964𝑎2 0 00 964𝑎2 00 0 964𝑎2) 

  +𝑀(0 0 00 0 00 0 964𝑎2)   

𝐼𝐴𝑖𝑗 = 𝐼𝐶𝑖𝑗 +𝑀𝐫𝑐′2𝛿𝑖𝑗 −𝑀𝑥𝑐,𝑖′ 𝑥𝑐,𝑗′  

⇒    (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) = ( 
  
83320𝑀𝑎2 0 00 83320𝑀𝑎2 00 0 25𝑀𝑎2) 

  +𝑀
( 
  
7364𝑎2 0 00 7364𝑎2 00 0 7364𝑎2) 

  −𝑀( 
 0 0 00 𝑎2 38𝑎20 38𝑎2 964𝑎2) 

 
 

[𝐈𝐴] = (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) = ( 
  
83320𝑀𝑎2 + 7364𝑀𝑎2 0 00 83320𝑀𝑎2 + 7364𝑀𝑎2 −𝑀𝑎2 −38𝑀𝑎20 −38𝑎2 25𝑀𝑎2 + 7364𝑀𝑎2 − 964𝑀𝑎2) 

   

[𝐈𝐴] = ( 
  
75𝑀𝑎2 0 00 25𝑀𝑎2 −38𝑀𝑎20 −38𝑀𝑎2 75𝑀𝑎2 ) 

  = (56𝛼 0 00 16𝛼 −15𝛼0 −15𝛼 56𝛼 ) ,      where,   𝛼 = 140𝑀𝑎2 

det([𝐈𝐴] − 𝜆[𝐼3]) = 0   ⇒    |56𝛼 − 𝜆 0 00 16𝛼 − 𝜆 −15𝛼0 −15𝛼 56𝛼 − 𝜆| = 0 

⇒   [𝐈𝐶] = (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) = ( 
 25𝑀𝑎2 − 964𝑀𝑎2 0 00 25𝑀𝑎2 − 964𝑀𝑎2 00 0 25𝑀𝑎2 − 964𝑀𝑎2 + 964𝑀𝑎2) 

 = ( 
 83320𝑀𝑎2 0 00 83320𝑀𝑎2 00 0 25𝑀𝑎2) 

 
.  

Now, we apply parallel axis theorem in tensor notation to find inertia tensor [𝐈𝐴] with respect to coordinate system 𝐴𝑥𝑦𝑧, as follows 

⇒  (𝐼𝐴11 𝐼𝐴12 𝐼𝐴13𝐼𝐴12 𝐼𝐴22 𝐼𝐴23𝐼𝐴13 𝐼𝐴23 𝐼𝐴33) = (𝐼𝐶11 𝐼𝐶12 𝐼𝐶13𝐼𝐶12 𝐼𝐶22 𝐼𝐶23𝐼𝐶13 𝐼𝐶23 𝐼𝐶33) +𝑀(𝐫𝑐
′2 0 00 𝐫𝑐′2 00 0 𝐫𝑐′2)−𝑀(

𝑥𝑐,1′ 𝑥𝑐,1′ 𝑥𝑐,1′ 𝑥𝑐,2′ 𝑥𝑐,1′ 𝑥𝑐,3′𝑥𝑐,1′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,2′ 𝑥𝑐,3′𝑥𝑐,1′ 𝑥𝑐,3′ 𝑥𝑐,2′ 𝑥𝑐,3′ 𝑥𝑐,3′ 𝑥𝑐,3′ ), 

where, 𝐫𝑐′ = (𝑥𝑐,1′ , 𝑥𝑐,1′ , 𝑥𝑐,1′ ) = (0, 𝑎, 38𝑎) is the position vector of centre of mass 𝐶 with respect to coordinate 

system 𝐴𝑥𝑦𝑧.  

To find the eigenvalues, we have the characteristic equation det([𝐼𝐴] − 𝜆[𝐼3]) = 0, where [𝐼3] is unit matrix of order 

3. 

On expanding by first row, we get,       (56𝛼 − 𝜆)[(16𝛼 − 𝜆)(56𝛼 − 𝜆) − (−15𝛼)2] = 0   ⇒    (20𝛼 − 𝜆)[896𝛼2 − 16𝛼𝜆 − 56𝛼𝜆 + 𝜆2 − 225𝛼2] = 0  ⇒ (56𝛼 − 𝜆)[𝜆2 − 72𝛼𝜆 + 671𝛼2] = 0  

 

 Either      56𝛼 − 𝜆 = 0 ⇒   𝜆 = 56𝛼 
or,      𝜆2 − 72𝛼𝜆 + 671𝛼2 = 0 ⇒   𝜆 = 72𝛼±√(72𝛼)2−4(1)(671𝛼2)2(1)  ⇒   𝜆 = 72𝛼±√5184𝛼2−2684𝛼22 = 72𝛼±√2500𝛼22 = 72𝛼±50𝛼2   ⇒  𝜆 = 72𝛼+50𝛼2  , 72𝛼−50𝛼2 = 122𝛼2  , 22𝛼2 = 61𝛼 , 11𝛼  

Thus,          𝜆1 = 56𝛼,          𝜆2 = 61𝛼,        and        𝜆3 = 11𝛼. 

These eigenvalues gives principal moments of inertia an 𝐴. To find the direction of corresponding principal axes, 

we find eigenvectors corresponding to each eigenvalue. 
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⇒     {− 40𝛼𝑥2 − 15𝛼𝑥3 = 0                 −15𝛼𝑥2 = 0      ⇒      {8𝑥2 − 3𝑥3 = 0 − −− −−−(1)              𝑥2 = 0 − − − − − −(2) 

([𝐈𝐴] − 𝜆2[𝐼3])𝑌 = 𝟎   ⇒    (56𝛼 − 61𝛼 0 00 16𝛼 − 61𝛼 −15𝛼0 −15𝛼 56𝛼 − 61𝛼)(𝑦1𝑦2𝑦3) = (000)   ⇒   (−5𝛼 0 00 −45𝛼 −15𝛼0 −15𝛼 −5𝛼 )(𝑦1𝑦2𝑦3) = (000) 

⇒     {                     −5𝛼𝑦1 = 0−45𝛼𝑦2 − 15𝛼𝑦3 = 0    −15𝛼𝑦2 − 5𝛼𝑦3 = 0        ⇒         {             𝑦1 = 0  3𝑦2 + 𝑦3 = 03𝑦2 + 𝑦3 = 0        ⇒         {            𝑦1 = 0 3𝑦2 + 𝑦3 = 0 

⇒     {                  −45𝛼𝑧1 = 0     5𝛼𝑧2 − 15𝛼𝑧3 = 0−15𝛼𝑧2 + 45𝛼𝑧3 = 0        ⇒         {            𝑧1 = 0𝑧2 − 3𝑧3 = 0𝑧2 − 3𝑧3 = 0        ⇒         {            𝑧1 = 0𝑧2 − 3𝑧3 = 0 

For 𝝀𝟏 = 𝟓𝟔𝜶: Let 𝑋 = (𝑥1𝑥2𝑥3) be the required eigenvector corresponding to eigenvalue 𝜆1 = 56𝛼, then 

([𝐈𝐴] − 𝜆1[𝐼3])𝑋 = 𝟎  ⇒   (56𝛼 − 56𝛼 0 00 16𝛼 − 56𝛼 −15𝛼0 −15𝛼 56𝛼 − 56𝛼)(𝑥1𝑥2𝑥3) = (000)   ⇒   (0 0 00 −40𝛼 −15𝛼0 −15𝛼 0 )(𝑥1𝑥2𝑥3) =(000)  

Thus we have,  𝑥2 = 𝑥3 = 0  and  𝑥1 = 𝑟,    where,   𝑟 ∈ ℝ , 𝑟 ≠ 0 

Thus,   𝑋 = (𝑥1𝑥2𝑥3) = (𝑟00) ,           ⇒     For   𝑟 = 1, we get,      𝑋 = (100) = 𝐢 + 0𝐣 + 0𝐤 = 𝐢 
For  𝝀𝟐 = 𝟔𝟏𝜶: Let 𝑌 = (𝑦1𝑦2𝑦3) be the required eigenvector corresponding to eigenvalue 𝜆2 = 61𝛼, then 

Let,  𝑦2 = 𝑠,    where,   𝑠 ∈ ℝ , 𝑠 ≠ 0        ⇒        𝑦3 = −3𝑠 

Thus,    𝑌 = (𝑦1𝑦2𝑦3) = ( 0𝑠−3𝑠)       ⇒          For   𝑠 = 1, we get,        𝑌 = ( 01−3) = 0𝐢 + 𝐣 − 3𝐤 = 𝐣 − 3𝐤 

For   𝝀𝟑 = 𝟏𝟏𝜶: Let 𝑍 = (𝑧1𝑧2𝑧3) be the required eigenvector corresponding to eigenvalue 𝜆3 = 11𝛼, then 

([𝐈𝐴] − 𝜆2[𝐼3])𝑍 = 𝟎  ⇒   (56𝛼 − 11𝛼 0 00 16𝛼 − 11𝛼 −15𝛼0 −15𝛼 56𝛼 − 11𝛼)(𝑧1𝑧2𝑧3) = (000)    ⇒     (45𝛼 0 00 5𝛼 −15𝛼0 −15𝛼 45𝛼 )(𝑧1𝑧2𝑧3) = (000)  

Let,  𝑧3 = 𝑡,    where,   𝑡 ∈ ℝ , 𝑡 ≠ 0        ⇒        𝑧2 = 3𝑡 
Thus,             𝑍 = (𝑧1𝑧2𝑧3) = ( 03𝑡𝑡 )        ⇒          For   𝑡 = 1,   we get,        𝑍 = (031) = 0𝐢 + 3𝐣 + 𝐤 = 3𝐣 + 𝐤 

Principal moment of inertia Principal axis Normalized principal axis 𝜆1 = 56𝛼 𝑋 = 𝐢 𝑋̂ = 𝐢 𝜆2 = 61𝛼 𝑌 = 𝐣 − 3𝐤 𝑌̂ = (1/√10)(𝐣 − 3𝐤) 𝜆3 = 11𝛼 𝑍 = 3𝐣 + 𝐤 𝑍̂ = (1/√10)(3𝐣 + 𝐤) 
Definition: Two distributions of matter are said to be “equimomental” if they have the same moment of inertia 

about any line in spase. 

Theorem: Two systems 𝑆1 and 𝑆2 are equimomental if and only if the following three conditions are satisfied, 

(𝑖) they have same mass, 

(𝑖𝑖) they have same centre of mass, and 

(𝑖𝑖𝑖) they have same principal axes and principal moments of inertia at centre of mass. 

Proof: Suppose that two systems 𝑆1 and 𝑆2 are equimomental. We will show that conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) are 

satisfied. 

(𝒊) Let 𝑀1 and 𝑀2, respectively, be the masses of the systems 𝑆1 and 𝑆2 and 𝐶1 and 𝐶2, respectively, be their centres 

of mass. Since the systems are supposed to be equimomental, therefore their moments of inertia about any line 

should be same. In particular, their moments of inertia about line 𝑙 through 𝐶1 and 𝐶2  should also be same, say,  𝐼𝑙. 
Let 𝑙′ be any line parallel to 𝑙 and 𝑑 be the perpendicular distance between 𝑙 and 𝑙′. Further suppose that 𝐼𝑙′ be the 

common moment of inertia of both systems about line 𝑙′. 
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𝐼𝑙 +𝑀1𝑑2 = 𝐼𝑙 +𝑀2𝑑2    ⇒    𝑀1 = 𝑀2 = 𝑀 (say) 
𝐼𝑙2 = 𝐼𝑙1 +𝑀|𝐶1𝐶2|2 −−−−−−→ (3) 𝐼𝑙2 = 𝐼𝑙1 −𝑀|𝐶1𝐶2|2 −−−−−−→ (4) 

𝐼𝑙′ = 𝐼1𝜆2 + 𝐼2𝜇2 + 𝐼3𝜈2, 
𝐼𝑙 = 𝐼𝑙′ +𝑀𝑑2 = 𝐼1𝜆2 + 𝐼2𝜇2 + 𝐼3𝜈2 +𝑀𝑑2, 

By parallel axis theorem, we have, 

                 𝐼𝑙′ = 𝐼𝑙 +𝑀1𝑑2       (for system 𝑆1)  − − − −−→ (1)  𝐼𝑙′ = 𝐼𝑙 +𝑀2𝑑2       (for system 𝑆2)  − − − −−→ (2)  
From equations (1) and (2), we have,   ⇒    masses of both systems are same  ⇒    condition (𝑖) is satisfied. 

(𝒊𝒊) Now, let  𝑙1 and 𝑙2, respectively, be the lines through 𝐶1 and 𝐶2 and 
perpendicular to line 𝑙. Let common moment of inertia of each system about line 𝑙1 be 𝐼𝑙1 and about line 𝑙2 be 𝐼𝑙2 .  

By parallel axis theorem, moment of inertia of system 𝑆1 about 𝑙2 is 

Again, by parallel axis theorem, moment of inertia of system 𝑆2 about 𝑙2 is  

From equations (3) and (4), we get 𝐼𝑙1 +𝑀|𝐶1𝐶2|2 = 𝐼𝑙1 −𝑀|𝐶1𝐶2|2  ⇒  |𝐶1𝐶2| = 0  ⇒   𝐶1 ≡ 𝐶2 ≡ 𝐶 (say) ⇒  centres of mass of both systems are same  ⇒  condition (𝑖𝑖) is satisfied. 

(𝒊𝒊𝒊) Since both system have same centre of mass 𝐶 and same mass 𝑀, 

Therefore, they both have same momental ellipsoid at 𝐶. Hence, they have same principal axes and principal 

moments of inertia at centre of mass 𝐶.   ⇒    condition (𝑖𝑖𝑖) is satisfied. 

Conversely, suppose that for two systems 𝑆1 and 𝑆2, conditions (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) are satisfied. We will show that 

both systems are equimomental.  

Let 𝐶 and 𝑀, respectively, be the common centre of mass and common 

mass of both systems. Further let that 𝐼1, 𝐼2 and 𝐼3 be the common principal 

moments of inertia about common principal axes at centre of mass 𝐶. In 

figure, common principal axes at 𝐶 are shown by Cartesian coordinate 

system 𝐶𝑥𝑦𝑧. 

Let 𝑙 be an arbitrary line in space. Draw a line 𝑙′ through 𝐶 parallel to 𝑙. 
Then the moment of inertia of each system about 𝑙′ is given by 

where, 𝜆, 𝜇 and 𝜈 are direction cosines of line 𝑙′.  Now, by using parallel axis theorem, the moment of inertia of each 

system about line 𝑙 is given by 

where, 𝑑 is the perpendicular distance between lines 𝑙 and 𝑙′. Since the moment of inertia of both system about an 

arbitrary line 𝑙 in space is same. This shows that both systems 𝑆1 and 𝑆2 are equimomental. 

Problem: Show that a hoop of mass 𝑚 and radius 𝑎/√2 is equimomental with a circular plate of mass 𝑚 radius 𝑎. 

Proof: The moment of inertia of a circular hoop (or ring) of mass 𝑚 and radius 𝑎/√2 about an axis through its 

centre and perpendicular to its plane is                           𝐼1 = 𝑚( 𝑎√2)2 = 12𝑚𝑎2.  
The moment of inertia of a circular plate (or disc) of mass 𝑚 and radius 𝑎 about an axis through its centre and 

perpendicular to its plane is                                                𝐼2 = 12𝑚𝑎2. 
Since, both moments of inertia are same. Therefore both systems are equimomental. 
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