Lecture 30: Discrete Mathematics

Course Title: Discrete Mathematics
Course Code: MTH211
Class: BSM-II

Objectives

The main aim of the lecture is to define the notion of

- combinations with examples.
- pigeonhole principle and generalized pigeonhole principle with example.
- The inclusion-exclusion pprinciple with example.

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- https://www.freepik.com/ (for background image)

Combinations

Let S be a set with n elements. A combination of these n elements taken r at a time is any selection of r of the elements where order does not count. Such a selection is called an r-combination; it is simply a subset of S with r elements.

The number of such combinations will be denoted by $C(n, r)$.
Other texts may use ${ }_{n} C_{r}, C_{n, r}, C_{r}^{n}$ or $\binom{n}{r}$.
Before we give the general formula for $C(n, r)$, we consider a special case.

Example: Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a time.
Each combination of three objects determines $3!=6$ permutations of the objects as follows:

$$
\begin{aligned}
& A B C: A B C, A C B, B A C, B C A, C A B, C B A \\
& A B D: A B D, A D B, B A D, B D A, D A B, D B A \\
& A C D: A C D, A D C, C A D, C D A, D A C, D C A \\
& B C D: B D C, B D C, C B D, C D B, D B C, D C B
\end{aligned}
$$

Thus the number of combinations multiplied by 3 ! gives us the number of permutations; that is,

$$
C(4,3) \cdot 3!=P(4,3) \text { or } C(4,3)=\frac{P(4,3)}{3!} .
$$

But $P(4,3)=4 \cdot 3 \cdot 2=24$ and $3!=6$; hence $C(4,3)=4$ as noted above.
As indicated above, any combination of n objects taken r at a time determines r ! permutations of the objects in the combination; that is,

$$
P(n, r)=r!C(n, r) .
$$

Accordingly, we obtain the following formula for $C(n, r)$ which we formally state as a theorem.

Theorem: For $n \geq r>0, C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}$.

Example: A farmer buys 3 cows, 2 sheep, and 4 hens from a man who has 6 cows, 5 sheep, and 8 hens. Find the number m of choices that the farmer has.

The farmer can choose the cows in $C(6,3)$ ways, the sheep in $C(5,2)$ ways, and the hens in $C(8,4)$ ways. Thus the number m of choices follows:

$$
m=C(6,3) \cdot C(5,2) \cdot C(8,4)=20 \cdot 10 \cdot 70=14000
$$

The Pigeonhole Principle

Many results in combinational theory come from the following almost obvious statement.
Pigeonhole Principle: If n pigeonholes are occupied by $n+1$ or more pigeons, then at least one pigeonhole is occupied by more than one pigeon.

This principle can be applied to many problems where we want to show that a given situation can occur.

Example

Suppose a department contains 13 professors, then two of the professors (pigeons) were born in the same month (pigeonholes).

The Pigeonhole Principle is generalized as follows.
Generalized Pigeonhole Principle: If n pigeonholes are occupied by $k n+1$ or more pigeons, where k is a positive integer, then at least one pigeonhole is occupied by $k+1$ or more pigeons.

Example:

Find the minimum number of students in a class to be sure that three of them are born in the same month.
Solution: Here the $n=12$ months are the pigeonholes, and $k+1=3$ so $k=2$.
Hence among any $k n+1=25$ students (pigeons), three of them are born in the same month.

The Inclusion-Exclusion Principle

Let A and B be any finite sets. Then

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

In other words, to find the number $n(A \cup B)$ of elements in the union of A and B, we add $n(A)$ and $n(B)$ and then we subtract $n(A \cap B)$; that is, we "include" $n(A)$ and $n(B)$, and we "exclude" $n(A \cap B)$. This follows from the simple fact that, when we add $n(A)$ and $n(B)$, we have counted the elements of set $(A \cap B)$ twice when A and B are not disjoint sets.

The above principle holds for any number of sets. We first state it for three sets.
Theorem: For any finite sets A, B, C we have

$$
n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(A \cap C)-n(B \cap C)+n(A \cap B \cap C)
$$

That is, we "include" $n(A), n(B), n(C)$, we "exclude" $n(A \cap B), n(A \cap C), n(B \cap C)$, and finally "include" $n(A \cap B \cap C)$.

Example

Find the number of mathematics students at a college taking at least one of the languages French, German, and Russian, given the following data:

65 study French, 20 study French and German,
45 study German, 25 study French and Russian, 8 study all three languages.
42 study Russian, 15 study German and Russian,
Solution: We want to find $n(F \cup G \cup R)$, where F, G, and R denote the sets of students studying French, German, and Russian, respectively.
By the Inclusion-Exclusion Principle,

$$
\begin{aligned}
n(F \cup G \cup R) & =n(F)+n(G)+n(R)-n(F \cap G)-n(F \cap R)-n(G \cap R)+n(F \cap G \cap R) \\
& =65+45+42-20-25-15+8=100
\end{aligned}
$$

Namely, 100 students study at least one of the three languages.

