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Sequence

A sequence is a function whose domain of definition is the set of natural
numbers.

Or it can also be defined as an ordered set.

Notation:
An infinite sequence is denoted as

{s, i or {s,: neN} or {s,,s,,S;,...; orsimply as {s,},

e.g. 1={123..}.

..){ } { -

i) {(-D)"} {1 -11,-1...}.
iv) {2,3,5,7,11,...}, a sequence of positive prime numbers.

Subsequence
It is a sequence whose terms are contained in given sequence.

0

A subsequence of {s, } is usually written as {s, }.
n=1

Increasing Sequence

A sequence {sn} Is said to be an increasing sequence if s, >s. V n>1.

n+l —

Decreasing Sequence

A sequence {sn} Is said to be an decreasing sequence if s, , <s, V n>1.

n+l —
Monotonic Sequence

A sequence {sn} Is said to be monotonic sequence if it is either increasing or
decreasing.
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Remarks:
= Asequence {s,} is monotonically increasing if s,,, —s, 0.

= A positive term sequence {s,} is monotonically increasing if Suiy1 v ol
S

n

= A sequence {sn} Is monotonically decreasing if s, —s_, >0.

n+l —
Sn
S

>1, V n>1.

= A positive term sequence {sn} Is monotonically decreasing if

n+1

Strictly Increasing or Decreasing
A sequence {sn} Is called strictly increasing or decreasing according as

S,,>S, Or s ,<s, VYV nx>Ll

n+1 n+1

Bernoulli’s Inequality
Let peR, p>-1and p=0 then for n>2 we have

(1+p)" >1+np.
Proof:
We shall use mathematical induction to prove this inequality.
Ifn=2
LHS =1+ p)*=1+2p+ p°,
R.H.S =1+2p,
= LH.S>RH.S,
I.e. condition | of mathematical induction is satisfied.

Suppose (1+ p)k S14KD oo, (i) where k>2

Now (1+p)“" =(1+p)(1+p)
>(1+ p)(1+kp) using (i)
=1+kp+ p+kp®
=1+ (k+1) p +kp?
>1+(k+Dp ignoring kp® >0,

= (1+p)“" >1+(k+1)p.
Since the truth for n=k implies the truth for n=k +1 therefore condition Il of
mathematical induction is satisfied. Hence we conclude that (1+ p)" >1+np. QO

Example:

Prove that {(u l) } IS an increasing sequence.
n
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Let sn:(1+1j where n>1.
n

To prove that this sequence is an increasing sequence, we use p=—, nx2in
n

Bernoulli’s inequality to have

()7
= (-3 5
= (e[ (3 ) -G )

= S, >S4 VvV nz=1.
This shows that {sn} IS increasing sequence. a
Example:

n+1
Prove that a sequence {(1+ ij } IS a decreasing sequence.
n
1 n+l
Let tn:(1+—j ; n>1.
n

We use p= in Bernoulli’s inequality.

n2

where

jn from (ii)

n +1jn from (i)
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1Y n+1Y n n 1
> 1+— || — V> =
n n n“-1 n n

n+1
:(n_ﬂj ¢,
n

e. t,>t..
Hence the given sequence is decreasing sequence. a

Bounded Sequence
A sequence {sn} Is said to be bounded if there exists a positive real number A

such that |s <A V neN.

If S and s are the supremum and infimum of elements forming the bounded
sequence {s,} we write S=sups, and s=infs,.

All the elements of the sequence s, such that |s,|<A V neN lie with in the
strip {y: —A<y< ;t}. But the elements of the unbounded sequence can not be
contained in any strip of a finite width.

Examples

@ Au,}= {(_r?n} is a bounded sequence

(i) {v,}={sinnx} is also bounded sequence. Its supremum is 1 and infimum is —1.
(iii) The geometric sequence {ar“}, r >1 is an unbounded above sequence. It is
bounded below by a.

(iv) {tan %ﬁ} IS an unbounded sequence.

Convergence of the Sequence
A sequence {s,} of real numbers is said to convergent to limit ‘s’ as n— oo, if

for every positive real number ¢ >0, there exists a positive integer n,, depending
upone, suchthat |s,—s|<e V n>n,.

We will try to understand it by graph of some sequence. Graph of any four sequences
is drawn in the picture below.
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Theorem
A convergent sequence of real number has one and only one limit (i.e. limit of
the sequence is unique.)
Proof:
Suppose {s,} converges to two limits s and t, where s=t.

s—1 i .
Put g:% then there exits two positive integers n, and n, such that

|s,—s|<e vV n>n
and |s,—t|<¢ v n>n,.
= |s,—s|<e and |s, —t|<& hold simultaneously ¥ n>max(n,n,).
Thus for all n>max(n,n,) we have
|s—t|=|s—s,+s, 1]

<|s,—s|+|s, —t]
<cte=2¢

= |s-t|< Z(Mj
2

= [s—t|<[s—t]
Which is impossible, therefore the limit of the sequence is unique. a
Note: If {s,} converges to s then all of its infinite subsequence converge to s.

Cauchy Sequence
A sequence {Xn} of real number is said to be a Cauchy sequence if for given

positive real number &, there exists a positive integer n,(g) such that
| X, —x, |<& v m,n>n,



Sequences -6 -

Theorem
A Cauchy sequence of real numbers is bounded.
Proof:
Let {s, } be a Cauchy sequence.

Take ¢ =1, then there exits a positive integers n, such that

s, =S| <1 v m,n>n,.
Fix m=n, +1 then
|s.|=]s, —S, 1+ S
<8y = Spia| T Sna
<1l+|s, vV n>n,

<A YV n>1,and 1=1+

Hence we conclude that {sn} Is a Cauchy sequence, which is bounded one. O

Note:
(i) Convergent sequence is bounded.
(i1) The converse of the above theorem does not hold.
I.e. every bounded sequence is not Cauchy.

Consider the sequence {sn} where s, =(-1)", n>1. Itis bounded sequence because
| (-D)"|=1<2 V n>1.

But it is not a Cauchy sequence if it is then for £ =1 we should be able to find a
positive integer n, such that |s, —s,|<1 forall m,n>n,.

But with m=2k +1, n=2k +2 when 2k +1>n,, we arrive at

‘ s, — Sm‘ :‘ (_1)2n+2 . (_1)2k+1
=[1+1|=2<1 s absurd.

Hence {sn} Is not a Cauchy sequence. Also this sequence is not a convergent

sequence. (it is an oscillatory sequence).

S,.a| (Ny changes as & changes)

Divergent Sequence
A {sn} is said to be divergent if it is not convergent or it is unbounded.

e.g. {n?} is divergent, it is unbounded.
(i) {(—1)”} tends to 1 or -1 according as n is even or odd. It oscillates finitely.
(iii) {(—1)“n} Is a divergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the
sequence itself is a divergent.
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Theorem

If s, <u, <t, V nxn, and if both the {s | and {t,} converge to same limits as

s, then the sequence {u, } also converges to s.
Proof:

Since the sequence {s,} and {t,} converge to the same limit s, therefore, for

given ¢ >0 there exists two positive integers n, n, > n, such that

|s,—s|<e v n>n
It,—s|<e vV n>n,
I.e. S—e<S,<S+¢& VvV n>n

S—e<t <s+¢ V n>n,
Since we have given
S, <u, <t
. S—&<S§, <u, <t <S+¢
= S—&<U,<S+¢

v n>n,
Vv n>max(n,,n,n,)
Vv n>max(n,,n,n,)

ie. |u,—s|<e V¥V n>max(n,n,n,)

le. limu, =s.

N—o0

Example
1

Show that limn" =1

n—o0

Solution
Using Bernoulli’s Inequality

(1+%jn 21+%2\/521

Also

SN

2 1

(1+%j2 =K1+%ﬂ >(Vn ) > nn =1,

1 1 2
= 1§n”<(1+—j ,

n

1 1 2
= liml<limnn <Iim(1+—] :
Jn

n—o0 n—o0 n—o0
1
= 1<Ilimn" <1.

n—o0
1

ie. limn" =1.

N—oo
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Example
Show that lim = 1 =4 + 12 =
o\ (N+1)°  (N+2) (2n)
Solution
Consider
1 1 1
S, = 5+ s+t >
((n+1) (n+2) (2n) j
and
n S n
(2n)2 n n2
1
= — < § <—
4n n

.1 : .1
= lim— < lims, < lim=

n—» 4N N—>o0 n—w )

= 0 < lims, <0

n—o0

= lims, =0

N—o0

Theorem
If the sequence {sn} converges to s then 3 a positive integer n

such that |sn|>%s.
Proof:
We fix g=%\5\>o

= 3 apositive integer n, such that
|s,—s|<¢ for n>n,

1
= \sn—s\<—\s\
2
Now
SHEHEN
2 2
<|s|-|s,—s| <|s+(s,—9)|

1
= Z|s|<|s,|.
2
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Theorem

Let aand b be fixed real numbers if {s } and {t,} converge tosandt
respectively, then

(i) {as,+bt } converges toas + bt.

(ii) {s,t,} converges to st.

D) {:—”} converges to % provided t, 0 ¥V nand t=0.

n

Proof:
Since {s,} and {t,} converge to s and t respectively,

o |s,—s|<e Vv n>neN
t,—t|<e vV n>n,eN
Also 3 2>0suchthat |s <A V n>1 (- {s,} is bounded )
(i) We have
|(as, +bt,)—(as+bt)

=|a(s, —s)+hb(t, —t)|
<|a(s, —s)|+|b(t,~t)]|
<|ale+|ble v n>max(n,n,)
:‘91’
where ¢ =|a|e+|b|e a certain number.
This implies {as, +bt,} converges to as + bt.
(i) |s,t,—st| =]s,t, —s,t+s,t—st]
s,(t, —t)+t(s,—s)| <|s,|-

(t =) +[t]-|(s, =)

< Ae+lt|e vV n>max(n,n,)
=&, where &, =& +|t|e acertain number.
This implies {s,t,} converges to st.
N Y R s
(i) tot] | tt
:‘\t:nHtt\‘ < %‘f“t‘ v n>max(n,n,) \tn\>%t
& & .
=7 = 6 where &, = [ acertain number.
3/t] 3]
This implies {ti} converges to %
n

Slo)s L 1_s i
Hence {t—} —{sn tn} converges to s T =T (from (ii) ) Q

n
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Theorem
For each irrational number x, there exists a sequence {r.} of distinct rational
numbers such that limr, =x.

n—o0

Proof:
Since x and x + 1 are two different real numbers
"+ 3 arational number r, such that

X<r<x+1
Similarly 3 arational number r, #r; such that

. 1
X<, <m|n(r1,x+E <x+1
Continuing in this manner we have

) 1
x<r3<m|n£r2,x+— <x+1
3

: 1
x<r4<m|n(r3,x+z <x+1

: 1
X<r < mln(rn_l,x+ﬁj< X+1
This implies that 3 a sequence {rn} of the distinct rational number such that

1 1
X——<X<I <X+—.

n n
Since
) 1 ) 1
lim| x—=|=lim| x+= |=X.
n—oo n n—oo n
Therefore
limr, =x. a
Theorem

Let a sequence {sn} be a bounded sequence.
(i) If {s,} is monotonically increasing then it converges to its supremum.
(i) If {sn} Is monotonically decreasing then it converges to its infimum.

Proof
Let S=sups, and s=infs,
Take £>0
(i)  Since S=sups,
-3 s, suchthat S—e<s,
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Since {Sn} is T ( T stands for monotonically increasing )
S S—e<s, <5, <S<S+e& forn>n,
= S—&<5,<S+¢ for n>n,
= |s,—S|<e for n>n,
— lims, =S
o
(i)  Since s=inf S,
~.3s, suchthat s, <s+e&
Since {s,} is ¥. ( 1 stands for monotonically decreasing )
L S—£<5<s,<s, <s+¢& forn>n
= S—&£<S,<S+¢ for n>n,
= |s,—s|<e¢ for n>n
Thus lims, =s Q

n—0

Note

A monotonic sequence can not oscillate infinitely.

Example:

Show that {(M%) } Is bounded sequence.

Consider {s, } = {(“ %J}

As shown earlier it is an increasing sequence

2n n
Take sZn:(1+2ij , then /s, :(1+2i] ,

n n

_ 1 _(2nj“ _ 1 _(1_ 1 j
A/SZH 2n+1 ﬂ/SZH 2n+1

Using Bernoulli’s Inequality we have

1 n n 1

= = 2> 1- >1-— = =
JSan 2n+1 2n 2
= S, < 2 vV n=123,...
= 5,,< 4 vV n=123,...
= §,<5,,<4 vV n=123,...

Which show that the sequence {s} is bounded one.

1 n n
1= >1-
2n+1 2n+1

Hence {sn} IS a convergent sequence the number to which it converges is its

supremum, which is denoted by ‘e’ and 2<e<3.
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Recurrence Relation

A sequence is said to be defined recursively or by recurrence relation if the

general term is given as a relation of its preceding and succeeding terms in the
sequence together with some initial condition.

Example:

Lett, >1and let {t } bedefinedby t = 2—% for n>1.

n

(i) Show that {t,} is decreasing sequence.

(i) It is bounded below.
(i) Find the limit of the sequence.

Since t, >1 and {t,} is defined by tn+1:2—ti ; n>1

=t>0 V nx1

Also t -t =t —2+tl

n
n

o+l (4, -1)
ot ot
=1t >t vV nx1.
This implies that t, is monotonically decreasing.
Since t >1 Y n>1,
= t, is bounded below.
Since t_ is decreasing and bounded below therefore t_ is convergent.

Let us suppose limt, =t.

n—

> 0.

n—o0 n—o0 N—o0 N—o0
n

Then limt  =limt, = Iim[Z—tlj:Iimtn

= 2—%=t = %ﬂ = 2t-1=t* = t?*-2t+1=0

= (t—1)2=0 = t=1.
Theorem
Every Cauchy sequence of real numbers has a convergent subsequence.

Proof:
Suppose {sn} is a Cauchy sequence.

Let ¢ >0 then 3 a positive integer n, >1 such that

<— v on,n., k=123......

Put bk=(Sn1—5no)+(snz_Sm)+"'+(snk_S”k-l)
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= \bk\:‘(snl—sno)+ s, —snl)+ +(Snk_snk_1)
s‘(sm—sno) +‘(sn —snl)‘+ + (snk—snkil)
it 412
2 2° 2k
1{1-L1
28(54‘2124‘ +21"j =& 2(1_;) :‘9(1_2_1kj
= |b|<e vV k=1

= {b,} is convergent
©b=s, —s, .S, =b+s,,

where s, is a certain fix number therefore {snk} which is a subsequence of {s, } is
convergent. Q

Theorem (Cauchy’s General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.
Proof:

Necessary Condition
Let {sn} be a convergent sequence, which convergesto s.
Then for given £ >0 3 a positive integer n,, such that

|sn—s|<% vV n>n,
Now for n>m>n,
S, =Sn| =[S, —s+5-5,]
<|s,—s|+|[s—s,| =|s,—s|+|s,—5]
<fif -
2 2 7
Which shows that {s,} is a Cauchy sequence.

Sufficient Condition

Let us suppose that {s, } is a Cauchy sequence then for £>0, 3 a positive
integer m, such that

|sn—sm|<gVn,m>m1 ........... (i)
Since {s,} is a Cauchy sequence

therefore it has a subsequence {s, | converging to s (say).
= 3 apositive integer m, such that

- 13 -
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snk—s‘<— vn>m, ........... (i)
Now
s, —s|=|s,—s, +5, —s‘
<|s,—S, |+ snk—s‘
<§+§:g v n>max(m,m,),
this shows that {sn} IS a convergent sequence. Q
Example
1 1 1] . ..
Prove that 1+§+§+ ............... + = ¢ Is divergent sequence.
n
Let {t,} be defined by
t :1+1+1+ ............... +1
2 3
For m,neN, n>m we have
It —t,|= L o A
m+1l m+2 n
> (n—m)l = 1—m.
n n
In particular if n=2m then
It —t,| 1
2
This implies that {tn} is not a Cauchy sequence therefore it is divergent. a
IR »

Theorem (nested intervals)
Suppose that {I } is a sequence of the closed interval such that I =[a,.b,],

l,.<1, V nx1 and (b,—a,)—>0 as n—oo then 1, contains one and only one

point.
Proof:
Since I ,, <1,

Lo <a,<a;<...<a<a <b <b . <...<b,<b, <b
{an} IS increasing sequence, bounded above by b, and bounded below by a, .
And {bn} is decreasing sequence bounded below by a, and bounded above by b, .
= {a,} and {b,} both are convergent.
Suppose {a,} convergestoa and {b,} convergesto b.
But |a—b|=|a-a,+a,—b,+b, —b]
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<|a,—a|+|a, —b,|+|b,—b| >0 as n—owo.
= a=b
and a,<a<b, V nxl. Q

Theorem (Bolzano-Weierstrass theorem)
Every bounded sequence has a convergent subsequence.

Proof:
Let {s,} be a bounded sequence.

Take a =infs, and b =sups,
Then a <s,<b V nx>1.
Now bisect interval [a,,b,| such that at least one of the two sub-intervals contains

infinite numbers of terms of the sequence.
Denote this sub-interval by [a,,b,].

If both the sub-intervals contain infinite number of terms of the sequence then
choose the one on the right hand.
Then clearly a <a, <b, <hb.

Suppose there exist a subinterval [a,,b, | such that
a<a,<..<a <b <..<b <b

1
= (bk—ak):?(bl—al)
Bisect the interval [a,,b, | in the same manner and choose [a,,,,b,,,] to have
a<a,<..<a <a,<b,<b <.<b <b

1
and B — :F(bl_ai)

This implies that we obtain a sequence of interval [a,,b, | such that
1
b,—a, :ﬁ(bl—ai)—m as n—oo.
— we have a unique point s such that
s=N[a,.b,]
there are infinitely many terms of the sequence whose length is ¢ > 0 that contain s.
For & =1 there are infinitely many values of n such that
|s,—s| <1
Let n, be one of such value then
‘Sra —s‘ <1
Again choose n, > n, such that

5, —s| < =
? 2
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Continuing in this manner we find a sequence {snk} for each positive integer k such
that n <n,, and

snk—s‘ < % V k=123,..........

Hence there is a subsequence {snk} which converges to s. a

Limit Inferior of the sequence

Suppose {s,} is bounded below then we define limit inferior of {s | as follow
Lilpo(inf S, )= limu,, where u, =inf {s,:n>k}
If s, is not bounded below then
lim(infs,)=—oo.

nN—o0

Limit Superior of the sequence

Suppose {s,} is bounded above then we define limit superior of {s } as follow
lim(sups,)=limv,, where v, =inf{s :n>k}

If s, is not bounded above then we have
lim(sups, ) =+c.

n—0

Note:
(i) A bounded sequence has unique limit inferior and superior

(ii) Let {sn} contains all the rational numbers, then every real number is a
subsequencial limit then limit superior of s is +co and limit inferior of s, is —oo

(iii) Let {s,} =(—1)“(1+%J

then limit superior of s, is 1 and limit inferior of s, is —1.

n

(iv) Let s, :[1+ 1Jcos nr.
n

Then u, =inf{s, :n>k}

=inf {(1+ 1)cos k;z,(l+ ijcos(k +l)7z,(1+ i)cos(k + 2);:,..}
k K+1 k+2

(1+%Jcos - if k is odd

(1+ chos(k +)7z if kis even
k+1

= lim(infs,)=limu, =-1

n—o0 nN—o0

Also v, =sup{s,:n>k}
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(1+ ijcos(k iz if kis odd
k+1

(1+%jcos kz if kis even

= lim(sups,)=limy, =1
N—o0

N—o0

Theorem
If {sn} IS a convergent sequence then

lims, = lim(infs,) = lim(sups,)

n—o n—oo nN—o0
Proof:
Let lims, =s then for a real number ¢ >0, 3 a positive integer n, such that
n—o0
s, —s|<e vnzn, ... ()
I.e. S—&<S,<S+¢ vV nxn,
If v, =sup{s,:n>k}
Then S—e<V,<S+¢ vV k>n,
= S—¢<limv <s+e¢ VKk=n, coooene (i)
k—0

from (i) and (ii) we have
s=lim sup{s,}

k—0

We can have the same result for limit inferior of {sn} by taking

u, =inf{s,:n>k}. a

~ -
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