Improper Integrals

Course Title: Real Analysis II Course Code: MTH322

Course instructor: Dr. Atiq ur Rehman Class: MSc-IV

Course URL: www.mathcity.org/atiq/fa15-mth322

We discussed (in MTH321: Real Analysis I) Riemann-Stieltjes's integrals of the form $\int_a^b f \, d\alpha$ under the restrictions that both f and α are defined and bounded on a finite interval [a,b]. To extend the concept, we shall relax these restrictions on f and α .

> Definition

The integral $\int_a^b f \, d\alpha$ is called an improper integral of first kind if $a = -\infty$ or $b = +\infty$ or both i.e. one or both integration limits is infinite.

> Definition

The integral $\int_a^b f \, d\alpha$ is called an improper integral of second kind if f(x) is unbounded at one or more points of $a \le x \le b$. Such points are called singularities of f(x).

> Examples

- $\int_{0}^{\infty} \frac{1}{1+x^2} dx$, $\int_{-\infty}^{1} \frac{1}{x-2} dx$ and $\int_{-\infty}^{\infty} (x^2+1) dx$ are examples of improper integrals of first kind.
- $\int_{-1}^{1} \frac{1}{x} dx$ and $\int_{0}^{1} \frac{1}{2x-1} dx$ are examples of improper integrals of second kind.

> Notations

We shall denote the set of all functions f such that $f \in R(\alpha)$ on [a,b] by $R(\alpha;a,b)$. When $\alpha(x)=x$, we shall simply write R(a,b) for this set. The notation $\alpha \uparrow$ on $[a,\infty)$ will mean that α is monotonically increasing on $[a,\infty)$.

IMPROPER INTEGRAL OF THE FIRST KIND

> Definition

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Keep a, α and f fixed and define a function I on $[a, \infty)$ as follows:

$$I(b) = \int_{a}^{b} f(x) d\alpha(x) \quad \text{if} \quad b \ge a \quad \dots \quad (i)$$

The function I so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol $\int_a^{\infty} f(x) d\alpha(x)$ or by $\int_a^{\infty} f d\alpha$.

The integral $\int_{a}^{\infty} f d\alpha$ is said to converge if the limit

$$\lim_{b\to\infty} I(b) \quad \dots \quad (ii)$$

exists (finite). Otherwise, $\int_a^\infty f \, d\alpha$ is said to diverge.

If the limit in (ii) exists and equals A, the number A is called the value of the integral and we write $\int_{a}^{\infty} f d\alpha = A$

> Example

Consider and integral $\int_{1}^{\infty} x^{-p} dx$, where p is any real number.

Now
$$I(b) = \int_{1}^{b} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{b} = \frac{1-b^{1-p}}{p-1}$$
 if $p \neq 1$.

As we know

$$\lim_{b \to \infty} I(b) = \lim_{b \to \infty} \frac{1 - b^{1 - p}}{p - 1} = \begin{cases} \infty & \text{if } p < 1, \\ \frac{1}{p - 1} & \text{if } p > 1. \end{cases}$$

Thus integral $\int_{1}^{\infty} x^{-p} dx$ diverges if p < 1 and converges if p > 1 and has the value

$$\frac{1}{p-1}$$
.

If
$$p=1$$
, we get $\int_1^b x^{-1} dx = \log b \to \infty$ as $b \to \infty$. $\Rightarrow \int_1^\infty x^{-1} dx$ diverges.

Hence we concluded:
$$\int_{1}^{\infty} x^{-p} dx = \begin{cases} diverges & if \quad p \le 1, \\ \frac{1}{p-1} & if \quad p > 1. \end{cases}$$

> Example

Consider
$$\int_{0}^{\infty} \sin 2\pi x \, dx$$

Since $\int_{0}^{b} \sin 2\pi x \, dx = \frac{1 - \cos 2\pi b}{2\pi} \to l$ as $b \to \infty$, where l has values between 0 and $\frac{1}{\pi}$, that is, limit is not unique.

Therefore the integral $\int_{0}^{\infty} \sin 2\pi x \, dx$ diverges.

> Note

If $\int_{-\infty}^{a} f d\alpha$ and $\int_{a}^{\infty} f d\alpha$ are both convergent for some value of a, we say that the

integral $\int_{-\infty}^{\infty} f \, d\alpha$ is convergent and its value is defined to be the sum

$$\int_{-\infty}^{\infty} f \, d\alpha = \int_{-\infty}^{a} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral $\int_{-\infty}^{\infty} f \, d\alpha$ converges, its value is equal to the limit: $\lim_{b \to +\infty} \int_{-b}^{b} f \, d\alpha$.

> Theorem

Assume that α is monotonically increasing on $[a,+\infty)$ and suppose that $f \in R(\alpha;a,b)$ for every $b \ge a$. Assume that $f(x) \ge 0$ for each $x \ge a$. Then $\int_a^\infty f \, d\alpha$ converges if, and only if, there exists a constant M > 0 such that

$$\int_{a}^{b} f \, d\alpha \leq M \quad \text{for every} \quad b \geq a.$$

Proof

Let $I(b) = \int_{a}^{b} f \, d\alpha$ and suppose that $\int_{a}^{\infty} f \, d\alpha$ is convergent, then $\lim_{b \to +\infty} I(b)$ exists, that is, I(b) is bounded.

So there exists a constant M > 0 such that

$$|I(b)| < M$$
 for every $b \ge a$.

As $f(x) \ge 0$ for each $x \ge a$, therefore $\int_{a}^{b} f d\alpha \ge 0$.

This gives $I(b) = \int_{a}^{b} f d\alpha \le M$ for every $b \ge a$.

Conversely, suppose that there exists a constant M > 0 such that $\int_a^b f d\alpha \leq M$ for

every $b \ge a$. This give $|I(b)| \le M$ for every $b \ge a$.

That is, I is bounded on $[a, +\infty)$.

Now for $b_2 \ge b_1 > a$, we have

$$I(b_{2}) = \int_{a}^{b_{2}} f(x) d\alpha(x) = \int_{a}^{b_{1}} f(x) d\alpha(x) + \int_{b_{1}}^{b_{2}} f(x) d\alpha(x)$$

$$\geq \int_{a}^{b_{1}} f(x) d\alpha(x) = I(b_{1}) \qquad \qquad \because \int_{b_{1}}^{b_{2}} f(x) d\alpha(x) \geq 0 \text{ as } f(x) \geq 0.$$

This gives I is monotonically increasing on $[a, +\infty)$.

As I is monotonically increasing and bounded on $[a,+\infty)$, therefore it is convergent, that is $\int_a^\infty f \, d\alpha$ converges.

> Theorem: (Comparison Test)

Assume that α is monotonically increasing on $[a,+\infty)$. If $f \in R(\alpha;a,b)$ for every $b \ge a$, if $0 \le f(x) \le g(x)$ for every $x \ge a$, and if $\int_a^\infty g \, d\alpha$ converges, then $\int_a^\infty f \, d\alpha$ converges and we have

$$\int_{a}^{\infty} f \, d\alpha \leq \int_{a}^{\infty} g \, d\alpha$$

Proof

From (i) and (ii) we have $I_1(b) \le M$ for every $b \ge a$.

 $\Rightarrow \lim_{b\to\infty} I_1(b)$ exists and is finite.

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha \quad \text{converges.}$$
Also
$$\lim_{b \to \infty} I_{1}(b) \le \lim_{b \to \infty} I_{2}(b) \le M$$

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha \le \int_{a}^{\infty} g \, d\alpha.$$

> Theorem (Limit Comparison Test)

Assume that α is monotonically increasing on $[a,+\infty)$. Suppose that $f \in R(\alpha;a,b)$ and that $g \in R(\alpha;a,b)$ for every $b \ge a$, where $f(x) \ge 0$ and $g(x) \ge 0$ if $x \ge a$. If

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

then $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ both converge or both diverge.

Proof

For all $b \ge a$, we can find some N > 0 such that

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \qquad \forall x \ge N \text{ for every } \varepsilon > 0.$$

$$\Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

Let $\varepsilon = \frac{1}{2}$. Then we have

$$\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2}.$$

$$\Rightarrow g(x) < 2f(x) \dots (i) \quad \text{and} \quad 2f(x) < 3g(x) \dots (ii)$$

From (i)
$$\int_{a}^{\infty} g \, d\alpha < 2 \int_{a}^{\infty} f \, d\alpha,$$

 $\Rightarrow \int_{a}^{\infty} g \, d\alpha \text{ converges if } \int_{a}^{\infty} f \, d\alpha \text{ converges and } \int_{a}^{\infty} f \, d\alpha \text{ diverges if } \int_{a}^{\infty} f \, d\alpha$ diverges.

From (ii)
$$2\int_{0}^{\infty} f d\alpha < 3\int_{0}^{\infty} g d\alpha$$
,

 $\Rightarrow \int_{a}^{\infty} f \, d\alpha \text{ converges if } \int_{a}^{\infty} g \, d\alpha \text{ converges and } \int_{a}^{\infty} g \, d\alpha \text{ diverges if } \int_{a}^{\infty} f \, d\alpha$ diverges.

 \Rightarrow The integrals $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ converge or diverge together.

> Note

The above theorem also holds if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$, provided that $c \neq 0$. If c = 0, we can only conclude that convergence of $\int_a^\infty g \, d\alpha$ implies convergence of $\int_a^\infty f \, d\alpha$.

> Example

For every real p, the integral $\int_{1}^{\infty} e^{-x} x^{p} dx$ converges.

This can be seen by comparison of this integral with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Let
$$f(x) = e^{-x}x^p$$
 and $g(x) = \frac{1}{x^2}$.

Now
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x}x^{p}}{\frac{1}{x^{2}}}$$
$$\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x}x^{p+2} = \lim_{x \to \infty} \frac{x^{p+2}}{e^{x}} = 0.$$

Since $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent, therefore the given integral $\int_{1}^{\infty} e^{-x} x^p dx$ is also convergent.

> Remark

It is easy to show that if $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ are convergent, then

- $\int_{0}^{\infty} (f \pm g) d\alpha$ is convergent.
- $\int_{-\infty}^{\infty} cf \, d\alpha$, where c is some constant, is convergent.

> Theorem

Assume $\alpha \uparrow$ on $[a,+\infty)$. If $f \in R(\alpha;a,b)$ for every $b \ge a$ and if $\int_a^\infty |f| d\alpha$ converges, then $\int_a^\infty f \, d\alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

If
$$x \ge a$$
, $\pm f(x) \le |f(x)|$
 $\Rightarrow |f(x)| - f(x) \ge 0$
 $\Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$
 $\Rightarrow \int_{a}^{\infty} (|f| - f) d\alpha$ converges.

Now difference of $\int_{a}^{\infty} |f| d\alpha$ and $\int_{a}^{\infty} (|f| - f) d\alpha$ is convergent, that is, $\int_{a}^{\infty} f d\alpha$ is convergent.

> Note

 $\int_{a}^{\infty} f \, d\alpha \text{ is said to converge absolutely if } \int_{a}^{\infty} |f| \, d\alpha \text{ converges. It is said to be}$ convergent conditionally if $\int_{a}^{\infty} f \, d\alpha \text{ converges but } \int_{a}^{\infty} |f| \, d\alpha \text{ diverges.}$

> Remark

Every absolutely convergent integral is convergent.

> Theorem (Cauchy condition for infinite integrals)

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Then the integral $\int_a^\infty f \, d\alpha$ converges if, and only if, for every $\varepsilon > 0$ there exists a B > 0 such that c > b > B implies

$$\left| \int_{b}^{c} f(x) d\alpha(x) \right| < \varepsilon$$

Proof

Let $\int_{a}^{\infty} f d\alpha$ be convergent. Then $\exists B > 0$ such that

$$\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \text{for every} \quad b \ge B \quad \dots \dots \dots (i)$$

Also for c > b > B,

$$\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \, \dots \dots \dots \dots (ii)$$

Consider

$$\left| \int_{b}^{c} f \, d\alpha \right| = \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when } c > b > B.$$

Conversely, assume that the Cauchy condition holds.

Define
$$a_n = \int_a^{a+n} f d\alpha$$
 if $n = 1, 2, \dots$

Consider n, m such that a + n, a + m > b > B, then

$$\begin{aligned} |a_{n} - a_{m}| &= \left| \int_{a}^{a+n} f \, d\alpha - \int_{a}^{a+m} f \, d\alpha \right| = \left| \int_{a}^{b} f \, d\alpha + \int_{b}^{a+n} f \, d\alpha - \int_{a}^{b} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right| \\ &= \left| \int_{b}^{a+n} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right| \le \left| \int_{b}^{a+n} f \, d\alpha \right| + \left| \int_{b}^{a+m} f \, d\alpha \right| < \varepsilon + \varepsilon = 2\varepsilon \end{aligned}$$

This gives, the sequence $\{a_n\}$ is a Cauchy sequence \Rightarrow it converges.

Let
$$\lim_{n\to\infty} a_n = A$$

Given
$$\varepsilon > 0$$
, choose B so that $\left| \int_{b}^{c} f d\alpha \right| < \frac{\varepsilon}{2}$ if $c > b > B$.

and also that
$$|a_n - A| < \frac{\varepsilon}{2}$$
 whenever $a + n \ge B$.

$$\begin{array}{c|c} & a+N \\ \hline & \times & \times & \times \\ \hline a & B & b & C \end{array}$$

Choose an integer N such that a + N > B i.e. N > B - a.

Then, if b > a + N, we have

$$\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| \int_{a}^{a+N} f \, d\alpha - A + \int_{a+N}^{b} f \, d\alpha \right|$$

$$\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha = A$$

This completes the proof.

> Remarks

It follows from the above theorem that convergence of $\int_a^{\infty} f \, d\alpha$ implies $\lim_{b\to\infty} \int_b^{b+\varepsilon} f \, d\alpha = 0$ for every fixed $\varepsilon > 0$.

However, this does not imply that $f(x) \to 0$ as $x \to \infty$.
