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You don't have to be a mathematician to have a feel for numbers. 

John Forbes Nash, Jr. 

Historical Note: Numbers are like blood cells in the body of mathematics. Just as the understanding of 

anatomy and physiology of an organic system depends much on the knowledge of blood cells, so does the 

understanding of mathematics depend on the knowledge of numbers. In fact, a major part of mathematics 

bases its development on numbers and their multifarious properties. 

It is very difficult, if not impossible, to spell 

out as to when did the concept of numbers 

came to human civilization. History, however, 

reveals that a formal study of numbers started 

almost five thousand years ago and that too 

by the Hindus who studied numbers purely as 

abstract symbols and were very proficient not 

only in discovering very large and very small 

numbers but also in using them effectively. 

Evidences are there that the Greek studied 

numbers purely on geometric conceptualization as they were very proficient in geometry and as a result had 

a relatively retarded progress. The greatest contribution of the Hindus is the discovery of zero, negative 

numbers and the decimal scale of representing numbers. In fact, they showed commendable mastery over 

rational numbers as early as the 5th century after Christ. The formal rigorous study of numbers, however 

began even much later when mathematics faced several foundational crises. All these started in the 17th 

century but reached a climax after George Cantor (1845-1925) in 18th and 19th century. The contribution of 

20th century in this regard is, on the one hand, stunning remarkable but on the other hand, devastating from 

the foundation point of view. The work and criticism by Russell (1872-1970), Lowenheim (1887-1940), 

Skolem (1887-1963) and Church (1903-1995) have been instrumental in bringing about a drastic change in 

our attitude and approach towards mathematics in general. In our modern approach, we start directly from 

real numbers defined axiomatically and then pass on to the related concept. (for more details see [4]). Many 

authors have different approach to define set of real numbers. Here we use the idea of Rudin introduced in 

[1]. 
 

For the understanding of the topic we consider that we know about  1,2,3,...= , 

 0, 1, 2,...=    and  | , 0
p

q
p q q=    . Some authors define these sets after 

defining the set of real numbers.  

The real number system can be described as a “complete ordered field”. Therefore, let’s 

discusses and understand these notions first. 
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❖ Order 

Let S be a non-empty set. An order on a set S is a relation denoted by “” 

with the following two properties 

(i) If  ,x y S , then one and only one of the statements   

x y  , x y= ,  y x  is true. 

(ii) If , ,x y z S  and if  x y ,  y z  then  x z . 

 

❖  Examples: 

Consider the following sets: 

o  1,2,3,...,50A=   

o  , , , ,B a e i o u=   

o  2: 19C x x x=      

There is an order on A and C but there is no order on B (we can define order on B). 
 

❖ Ordered Set 

A non-empty set S is said to be ordered set if an order is defined on S. 
 

❖  Examples 

    The set  2,4,6,7,8,9 ,  and  are examples of ordered set with standard 

order relation. 

The set  , , ,a b c d  and , , ,     are examples of set with no order. Also set 

of complex numbers have no order.     
 

❖ Bound 

       Upper Bound 

Let S be an ordered set and E S . If there exists a S   such that x   for 

all x E , then we say that E is bounded above. The number   is known as upper 

bound of E. 

        Lower Bound 

Let S be an ordered set and E S . If there exists a S   such that x   for 

all x E , then we say that E is bounded below. And   is known as lower bound of 

E. 
 

❖ Example 

(i) Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

Set of all lower bounds of  1,2,3,4,5E = . 

 Set of all upper bounds of  20,21,22,...,50E = . 
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(ii) Consider S = , {1,2,3,...,100}E =  and {10,20,30,...}F = . 

Set of lower bounds of E = {1}. 

Set of lower bounds of F  = {1,2,3,...,10}. 

Set of upper bounds of E  = {100,101,102,...}. 

Set of upper bounds of F  =  . 
 

 ❖ Least Upper Bound (Supremum) 

Suppose S is an ordered set, E S  and E is bounded above. Suppose there 

exists an S   such that 

(i)   is an upper bound of E. 

(ii) If    for S  , then   is not an upper bound of E. 

Then   is called least upper bound of E or supremum of E and written as sup E = . 

In other words,   is the least member of the set of upper bound of E. 
 

❖ Example 

     Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

(i) It is clear that 20 is upper bound of E . 

(ii)  For S   if 20  then clearly   is not an upper bound of E . Hence 

sup 20E = . 

 

❖ Greatest Lower Bound (Infimum) 

Suppose S is an ordered set, E S  and E is bounded below. Suppose there 

exists a S   such that 

(i)   is a lower bound of E. 

(ii) If    for S  ,  then   is not a lower bound of E. 

Then   is called greatest lower bound of E or infimum of E and written as 

inf E = . 

In other words,   is the greatest member of the set of lower bound of E. 

 

❖ Example 

     Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

(i) It is clear that 5 is lower bound of E . 

(ii)  For S   if 5  , then clearly   is not lower bound of E . Hence inf 5E = . 
 

❖ Remark 

If   is supremum or infimum of E, then   may or may not belong to E. 

Let  1 : 0E r r r=     and  2 : 0E r r r=    . 
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        Then 
1 2sup inf 0E E= =   but 

10 E  and 
20 E . 

 

❖ Example 

Let E   be the set of all numbers of the form  1
n

, where n is the natural 

numbers, that is, 

1 1 1
1, , ,

2 3 4
,E

 
=  
 

. 

Then sup 1E =  which is in E, but inf 0E =  which is not in E. 

 

❖ Least Upper Bound Property 

   A set S is said to have the least upper bound property if the followings is true 

(i)  S is non-empty and ordered. 

(ii) If E S  and E is non-empty and bounded above then supE exists in S. 

    Greatest lower bound property can be defined in a similar manner. 

 

❖ Remark 

   The above property is known as completeness axiom or LUB axiom or continuity 

axiom or order completeness axiom. 

   The set of rational numbers  doesn’t satisfy completeness axiom. Consider a set  

 2: 2E x x x=    . One can prove that supremum of E  doesn’t exist in . 

   To prove it, consider r  is the supremum of E , then clearly 
2 2r = .  

   We have left for the reader to prove that there doesn’t exist any rational number r , 

which satisfy the above expression (or alternatively 2  is not a rational number). 
  

❖ Theorem 

Suppose S is an ordered set with least upper bound property, B S , B is non-

empty and is bounded below. Let L be set of all lower bound of B. Then  

sup L =  

exists in S and inf B = . 

Proof 

Since B is bounded below therefore L is non-empty. 

   Since L consists of exactly those y S  which satisfy the inequality. 

 y x      x B   

   We see that every x B  is an upper bound of L. 

    L is bounded above. 

  Since S is ordered and non-empty with least upper bound property therefore L has a 

supremum in S. Let us call it  . 
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  If    ,  then (by definition of supremum)   is not upper bound of L. 

B  . 

   It follows that  x x B    . 

   Thus   is lower bound of B . 

   Now if   , then L   because sup L = , that is,   is not lower bound of B . 

   this means (by definition of infumum) inf B = . 
 

❖ Remark 

   Above theorem can be stated as follows: 

An ordered set which has the least upper bound property has also the greatest 

lower bound property. 
 

❖ Field  

A set F with two operations called addition and multiplication satisfying the 

following axioms is known to be field. 

Axioms for Addition: 

(i)   If ,x y F   then  x y F+  . Closure Law 

(ii)  , ,x y y x x y F+ = +   . Commutative Law 

(iii) ( ) ( ) , ,x y z x y z x y z F+ + = + +   .  Associative Law 

(iv)  For any x F , 0 F   such that 0 0x x x+ = + =   Additive Identity 

(v)   For any x F , x F −   such that ( ) ( ) 0x x x x+ − = − + =       +tive Inverse 
 

Axioms for Multiplication: 

     (i)  If ,x y F   then  x y F .  Closure Law 

     (ii)  , ,x y y x x y F=      Commutative Law 

     (iii)  ( ) ( ) , ,x y z x y z x y z F=    

     (iv)  For any x F , 1 F   such that 1 1x x x =  =   Multiplicative Identity 

     (v)  For any x F , 0x  ,  
1

F
x

  ,  such that 
1 1

1x x
x x

   
= =   

   
   tive Inverse. 

Distributive Law 

For any , ,x y z F ,  (i)  ( )x y z xy xz+ = +  

(ii)  ( )x y z xz yz+ = +  

❖ Ordered Field 

   An ordered field is a field F which is also an ordered set such that  

i)  x y x z+  +   if  , ,x y z F   and  y z . 

ii)  0xy   if  ,x y F  ,  0x   and 0y  . 

   For example, the set  of rational number is an ordered field. 
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❖ Existence of Real Field 

   There exists an ordered field  (set of real numbers) which has the least upper 

bound property. 

   Moreover  contains  (set of rational numbers) as a subfield. 

   The members of  are called real numbers. The real numbers which are not 

rational are called irrational numbers.  

   (To see complete proof of the existence of real field from set , see [1, Page 17])  
 

 
 

❖ Remarks 

The real numbers include all the rational numbers, such as the integer −5 and 

the fraction 4/3, and all the irrational numbers such as 2  (1.41421356…, the 

square root of two, an irrational algebraic number) and π (3.14159265…, a 

transcendental number). Real numbers can be thought of as points on an infinitely 

long line called the number line or real line, where the points corresponding to 

integers are equally spaced. Any real number can be determined by a possibly 

infinite decimal 

representation such as that 

of 8.632, where each 

consecutive digit is 

measured in units one 

tenth the size of the 

previous one. Or in other words, any real number can be though as length of line in 

such a way that  
 

❖ Theorem 

Let , ,x y z . Then axioms for addition imply the following.  

(a)  If x y x z+ = +  then y z=  

(b)  If x y x+ =  then 0y =  

(c)  If 0x y+ =  then y x= − . 

(d)  ( )x x− − =  

Proof 

(Note: We have given the proofs here just to show that the things which looks simple must 

have valid analytical proofs under some consistence theory of mathematics) 

There are many other ways to construct a set of real numbers. We are not 

interested to do so therefore we leave it to the reader if they are interested then 

following page is useful: 

http://en.wikipedia.org/wiki/Construction_of_the_real_numbers 
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(a) Suppose  x y x z+ = + . 

Since   0y y= +  

     ( )x x y= − + +    0x x− + =  

     ( )x x y= − + +    by Associative law 

     ( )x x z= − + +    by supposition 

     ( )x x z= − + +    by Associative law 

     (0) z= +     0x x− + =  

     z=  

(b) Take 0z =  in (a) 

0x y x+ = +  

0y =  

(c) Take z x= −  in (a) 

( )x y x x+ = + −  

y x =−  

(d) Since ( ) 0x x− + =  

then (c) gives ( )x x= − −  
 

❖ Theorem 

Let , ,x y z . Then axioms of multiplication imply the following. 

(a)  If 0x   and x y x z=   then  y z= . 

(b)  If 0x   and x y x=  then  1y = . 

(c)  If 0x   and 1x y=   then  
1

y
x

= . 

(d)  If 0x  , then 
1

1
x

x

= . 

Proof  

(Note: We have given the proofs here just to show that the things which looks simple must 

have valid analytical proofs under some consistence theory of mathematics) 

(a) Suppose x y x z=  

Since 1y y=   

   
1

x y
x

 
=  
 

   
1

1x
x
 =  

   ( )
1

x y
x

=     by associative law 

        ( )
1

x z
x

=     x y x z=  
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1

x z
x

 
=  
 

   by associative law 

   1 z z=  =  

(b) Take 1z =  in (a) 

1x y x=   1y =  

(c) Take 
1

z
x

=  in (a) 

1
x y x

x
=      i.e. 1x y =  

1
y

x
 =  

(d)  Since       
1

1x
x
 =  

then (c) give  

1

1
x

x

=  

 

❖ Theorem 

Let , ,x y z . Then field axioms imply the following. 

(i)  0 x x =     (ii)  if 0x  , 0y   then 0xy  . 

(iii) ( ) ( ) ( )x y xy x y− = − = −  (iv) ( )( )x y xy− − =  

Proof 

(i)         Since  0 0 (0 0)x x x+ = +  

0 0 0x x x + =  

        0 0x =    0x y x y+ =  =  

(ii)  Suppose 0, 0x y   but 0x y =  

Since 
1

1 x y
x y

=   

    
1

1 (0)
x y

 =    0xy =  

   1 0 =     from (i)     0 0x =  

a contradiction, thus (ii) is true. 

(iii)     Since ( ) ( ) 0 0x y xy x x y y− + = − + = = …….. (1) 

   Also          ( ) ( ) 0 0x y xy x y y x− + = − + = =  ……… (2) 

   Also          ( ) 0xy xy− + =  …………. (3) 
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   Combining (1) and (2) 

       ( ) ( )x y xy x y xy− + = − +  

 ( ) ( )x y x y − = −  ………… (4) 

   Combining (2) and (3) 

( ) ( )x y xy xy xy− + = − +  

      ( )x y xy − = −  …………. (5) 

   From (4) and (5)  

      ( ) ( )x y x y xy− = − = −  

(iv)        ( )( ) ( )x y x y xy xy− − = − − = − − =            using (iii) 

 

❖ Theorem 

Let , ,x y z . Then the following statements are true in every ordered field. 

i) If 0x   then 0x−   and vice versa. 

ii) If 0x   and y z  then  xy xz . 

iii) If 0x   and y z  then  xy xz . 

iv) If 0x   then 2 0x   in particular  1 0 . 

v) If 0 x y   then 
1 1

0
y x

  . 

Proof 

 i)   If 0x    then  0 0x x x= − +  − +    so that   0x−  . 

 If 0x    then  0 0x x x= − +  − +    so that  0x−  . 

 ii) Since  z y  we have  0z y y y−  − =  

which means that  0z y−     also  0x   

    ( ) 0x z y−   

   0xz xy −   

0xz xy xy xy − +  +  

0 0xz xy +  +  

xz xy   

iii) Since y z        y y y z− +  − +  

 0z y −    

 Also  0x     0x −   

 Therefore    ( ) 0x z y− −   

    0xz xy − +    0xz xy xz xz − + +  +  

    xy xz   

 

iv)   If 0x   then  0x x     2 0x   
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  If 0x    then   0x−    ( )( ) 0x x − −    2( ) 0x −     2 0x   

  i.e.   if 0x    then  2 0x  ,  since  21 1=   then 1 0 . 

v)    If 0y   and 0v     then   0yv  , But 
1

1 0y
y

 
=  

 
    

1
0

y
   

 Likewise,    
1

0
x
    as   0x   

If we multiply both sides of the inequality x y  by the positive quantity, 

1 1

x y

  
  
  

 we obtain  
1 1 1 1

x y
x y x y

      
      

      
 

i.e.      
1 1

y x
  

 finally,  
1 1

0
y x

  . 

 

❖ Theorem (Archimedean Property) 

If x , y  and 0x    then there exists a positive integer n such that 

    nx y .  

Proof 

Let  : 0,A nx n x x+=      

   Suppose the given statement is false i.e.  nx y . 

   y is an upper bound of A. 

   Since we are dealing with a set of real therefore it has the least upper bound 

property. 

   Let sup A =  

  x −  is not an upper bound of A. 

  x mx −  ,  where mx A  for some positive integer m. 

  ( 1)m x  + ,  where  m + 1 is integer, therefore ( 1)m x A+  . 

   This is impossible because   is least upper bound of A  i.e. sup A = . 

   Hence we conclude that the given statement is true i.e. nx y . 

 

❖ The Density Theorem 

If x , y  and x y  then there exists p  such that  x p y   . 

i.e. between any two real numbers there is a rational number or  is dense in . 

Proof 

Since x y ,  therefore 0y x−  . 
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     there exists a positive integer n such that  

( ) 1n y x−    (by Archimedean Property) 

        1ny nx  +  …………… (i) 

   Again we use Archimedean property to obtain two positive integers 
1m  and 

2m   

 such that  
1 1m nx    and  

2 1m nx  −  

    
2 1m nx m −   , 

   then there exists and integers  
2 1( )m m m m−    such that  

1m nx m−    
 

   nx m     and   1m nx +  

   1nx m nx   +  

   nx m ny       from (i) 

   Since 0n  , it follows that     

          
m

x y
n

   

  x p y       where   
m

p
n

=   is a rational. 

 

❖ Theorem 

   Given two real numbers x and y, x y  there is an irrational number u such that 

   x u y  . 

Proof 

   If we apply density theorem to real numbers 
2

x
 and 

2

y
, we obtain a rational 

number 0r   such that      

2 2

x y
r     

     2x r y    

     x u y   , 

   where 2u r=  is an irrational as product of rational and irrational is irrational. 
 

❖ Theorem 

   For every real number x there is a set  E of rational number such that supx E= . 

Proof 

   Take { : }E q q x=    where x is a real. 

   Then E is bounded above. Since E   therefore supremum of E exists in . 
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   Suppose sup E = . 

   It is clear that  x  . 

   If x =  then there is nothing to prove. 

   If x   then   q  such that  q x   , 

   which can not happened hence we conclude that real x is supE. 
 

❖ Question  

   Let E be a non-empty subset of an ordered set, suppose   is a lower bound of E 

and   is an upper bound then prove that   . 

Proof 

   Since E is a subset of an ordered set S i.e. E S . 

   Also   is a lower bound of E therefore by definition of lower bound  

x    x E   …………… (i) 

   Since   is an upper bound of E therefore by the definition of upper bound 

x    x E   …………… (ii) 

   Combining (i) and (ii) 

x    

         as required. 

 

❖ The Extended Real Numbers 

   The extended real number system consists of real field  and two symbols +  

and − . We preserve the original order in  and define 

  x x− +     . 

   The extended real number system does not forms a field. Mostly we write + =  .    

   We make following conventions: 

i) If x is real the , , 0
x x

x x −
−

+ = − =  = =
 

.      

ii) If 0x   then ( ) , ( )x x − − =  =  . 

iii) If 0x   then ( ) , ( )x x− − =   = . 

 

 

 

❖ Euclidean Space 

   For each positive integer k, let 
k
 be the set of all ordered k-tuples  

      
1 2( , ,..., )kx x x x=    

   where 
1 2, ,..., kx x x  are real numbers, called the coordinates of x . The elements of 

k
 are called points, or vectors, especially when 1k  . 
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   If 
1 2( , ,..., )ny y y y=  and   is a real number, put 

1 1 2 2( , ,..., )k kx y x y x y x y+ = + + +  

    and  
1 2( , ,..., )kx x x x   = . 

   So that kx y+    and  kx  . These operations make k  into a vector space 

over the real field. 

   The inner product or scalar product of x  and y  is defined as  

1 1 2 2

1

. ...
k

i i k k

i

x y x y x y x y x y
=

= = + + + . 

   And the norm of x  is defined by 
1

2
1

2 2

1

( )
k

ix x x x
 

=  =  
 
 . 

   The vector space 
k
 with the above inner product and norm is called  

Euclidean k-space. 
 

❖ Theorem 

   Let , nx y  then 

i) 
2

x x x=  , 

ii) x y x y  .  (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 
1

2( )x x x=    therefore 
2

x x x=   

ii)  If 0x =  or 0y = , then Cauchy-Schwarz’s inequality holds with equality. 

If 0x   and 0y  , then for   we have 

2

0 x y −   ( ) ( )x y x y = −  −  

    ( ) ( ) ( )x x y y x y  =  − + −  −  

    ( ) ( ) ( ) ( )x x x y y x y y   =  +  − + −  + −  −  

    
22 22 ( )x x y y = −  +  

   Now put 
2

x y

y



=   (certain real number) 

 
( )( ) ( )

2

22

2 4
0 2

x y x y x y
x y

y y

  
  − +     

( )
2

2

2
0

x y
x

y


  −      
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2 22
0 x y x y  −    2 2| |a a a=   , 

( )( )0 x y x y x y x y  +  −  . 

Which hold if and only if  

      0 x y x y −   

i.e. x y x y  . 

 

❖ Question  

   Suppose , , nx y z  the prove that 

a) x y x y+  +  

b) x z x y y z−  − + −  

Proof 

 a)  Consider      ( ) ( )
2

x y x y x y+ = +  +  

x x x y y x y y=  +  +  +   

   ( )
22

2x x y y= +  +  

22
2x x y y +  +     | |a a a   . 

   
22

2x x y y + +   x y x y   

   ( )
2

x y= +  

    x y x y +  +   …………. (i) 

b) We have           x z x y y z− = − + −  

x y y z − + −   from (i)  

❖ Relatively Prime 

Let ,a b . Then a  and b  are said to be relatively prime or co-prime if a  and b  

don’t have common factor other than 1. If a  and b  are relatively prime then we 

write ( , ) 1a b = .  

❖ Question  

   If r is non-zero rational and x is irrational then prove that r x+  and r x  are 

irrational. 

Proof 

   Let r x+  be rational. 
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a
r x

b
 + =    where ,a b  , 0b   such that ( ), 1a b = , 

a
x r

b
 = −  

   Since r is rational therefore 
c

r
d

=   where ,c d  , 0d   such that ( ), 1c d = , 

a c
x

b d
 = −    

ad bc
x

bd

−
 = , where 0bd  . 

   This is rational, which can not happened because x is given to be irrational, hence 

we conclude that r x+  is irrational. 

 

   Similarly let us suppose that r x  is rational then  

       
a

r x
b

=         for some ,a b , 0b   such that ( ), 1a b = . 

1a
x

b r
 =   

   Since r is non-zero rational therefore 
c

r
d

=   where ,c d  , , 0c d   such that 

( ), 1c d = . 

1a a d ad
x

cb b c bc
d

 =  =  = , where 0bc  . 

   This shows that x is rational, which is again contradiction; hence we conclude that 

r x  is irrational. 
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