Chapter 2 – Sequences

Course Title: Real Analysis 1Course Code: MTH321Course instructor: Dr. Atiq ur RehmanClass: MSc-IICourse URL: www.mathcity.org/atiq/fa14-mth321

Sequence

A sequence is a function whose domain of definition is the set of natural numbers.

Or it can also be defined as an ordered set.

Notation:

An infinite sequence is denoted as

$$\{s_n\}_{n=1}^{\infty} \text{ or } \{s_n : n \in \mathbb{N}\} \text{ or } \{s_1, s_2, s_3, ...\} \text{ or simply as } \{s_n\},\$$

e.g.
i) $\{n\} = \{1, 2, 3, ...\}.$
ii) $\{\frac{1}{n}\} = \{1, \frac{1}{2}, \frac{1}{3}, ...\}.$
iii) $\{(-1)^{n+1}\} = \{1, -1, 1, -1, ...\}.$

Subsequence

It is a sequence whose terms are contained in given sequence.

A subsequence of $\{s_n\}$ is usually written as $\{s_{n_k}\}$.

Increasing Sequence

A sequence $\{s_n\}$ is said to be an increasing sequence if $s_{n+1} \ge s_n \quad \forall n \ge 1$.

Decreasing Sequence

A sequence $\{s_n\}$ is said to be an decreasing sequence if $s_{n+1} \le s_n \quad \forall n \ge 1$.

Monotonic Sequence

A sequence $\{s_n\}$ is said to be monotonic sequence if it is either increasing or decreasing.

$$\{s_n\}$$
 is monotonically increasing if $s_{n+1} - s_n \ge 0$ or $\frac{s_{n+1}}{s} \ge 1$, $\forall n \ge 1$.

 $\{s_n\}$ is monotonically decreasing if $s_n - s_{n+1} \ge 0$ or $\frac{s_n}{s_{n+1}} \ge 1$, $\forall n \ge 1$.

Strictly Increasing or Decreasing

 $\{s_n\}$ is called strictly increasing or decreasing according as

 $s_{n+1} > s_n$ or $s_{n+1} < s_n \quad \forall n \ge 1$.

Bernoulli's Inequality

Let $p \in \mathbb{R}$, $p \ge -1$ and $p \ne 0$ then for $n \ge 2$ we have $(1+p)^n > 1+np$.

Proof:

We shall use mathematical induction to prove this inequality. If n = 2

$$\begin{split} L.H.S &= (1+p)^2 = 1 + 2p + p^2, \\ R.H.S &= 1 + 2p, \\ &\implies L.H.S > R.H.S, \end{split}$$

i.e. condition *I* of mathematical induction is satisfied.

Suppose
$$(1+p)^{k} > 1+kp$$
(i) where $k \ge 2$
Now $(1+p)^{k+1} = (1+p)(1+p)^{k}$
 $> (1+p)(1+kp)$ using (i)
 $= 1+kp+p+kp^{2}$
 $= 1+(k+1)p+kp^{2}$
 $\ge 1+(k+1)p$ ignoring $kp^{2} \ge 0$,
 $\Rightarrow (1+p)^{k+1} > 1+(k+1)p$.

Since the truth for n = k implies the truth for n = k + 1 therefore condition *II* of mathematical induction is satisfied. Hence we conclude that $(1+p)^n > 1+np$.

Example:

Prove that
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$
 is an increasing sequence.
Let $s_n = \left(1 + \frac{1}{n}\right)^n$ where $n \ge 1$.

To prove that this sequence is an increasing sequence, we use $p = \frac{-1}{n^2}$, $n \ge 2$ in Bernoulli's inequality to have

$$\begin{split} \left(1 - \frac{1}{n^2}\right)^n &> 1 - \frac{n}{n^2} \\ \Rightarrow \left(\left(1 - \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)\right)^n &> 1 - \frac{1}{n} \\ \Rightarrow \left(1 + \frac{1}{n}\right)^n &> \left(1 - \frac{1}{n}\right)^{1-n} = \left(\frac{n-1}{n}\right)^{1-n} = \left(\frac{n}{n-1}\right)^{n-1} = \left(1 + \frac{1}{n-1}\right)^{n-1} \\ \Rightarrow s_n > s_{n-1} \qquad \forall n \ge 1. \end{split}$$

This shows that $\{s_n\}$ is increasing sequence.

Example:

Prove that a sequence
$$\left\{ \left(1 + \frac{1}{n}\right)^{n+1} \right\}$$
 is a decreasing sequence.
Let $t_n = \left(1 + \frac{1}{n}\right)^{n+1}$; $n \ge 1$.
We use $p = \frac{1}{n^2 - 1}$ in Bernoulli's inequality.
 $\left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{n}{n^2 - 1} \dots \dots (i)$
where
 $1 + \frac{1}{n^2 - 1} = \frac{n^2}{n^2 - 1} = \left(\frac{n}{n - 1}\right) \left(\frac{n}{n + 1}\right)$
 $\Rightarrow \left(1 + \frac{1}{n^2 - 1}\right) \left(\frac{n + 1}{n}\right) = \left(\frac{n}{n - 1}\right) \dots \dots (ii)$
Now $t_{n-1} = \left(1 + \frac{1}{n - 1}\right)^n = \left(\frac{n}{n - 1}\right)^n$ from (ii)
 $= \left(\left(1 + \frac{1}{n^2 - 1}\right) \left(\frac{n + 1}{n}\right)^n$ from (i)
 $> \left(1 + \frac{n}{n^2 - 1}\right) \left(\frac{n + 1}{n}\right)^n$ from (i)
 $> \left(1 + \frac{1}{n}\right) \left(\frac{n + 1}{n}\right)^n$ $\therefore \frac{n}{n^2 - 1} > \frac{n}{n^2} = \frac{1}{n}$
 $= \left(\frac{n + 1}{n}\right)^{n+1} = t_n$,
i.e. $t_{n-1} > t_n$.

Hence the given sequence is decreasing sequence.

Bounded Sequence

A sequence $\{s_n\}$ is said to be bounded if there exists a positive real number λ such that $|s_n| < \lambda \quad \forall n \in \mathbb{N}$.

If *S* and *s* are the supremum and infimum of elements forming the bounded sequence $\{s_n\}$ we write $S = \sup s_n$ and $s = \inf s_n$.

All the elements of the sequence s_n such that $|s_n| < \lambda \quad \forall n \in \mathbb{N}$ lie with in the strip $\{y: -\lambda < y < \lambda\}$. But the elements of the unbounded sequence can not be contained in any strip of a finite width.

Examples

(i) $\{u_n\} = \left\{\frac{(-1)^n}{n}\right\}$ is a bounded sequence

(ii) $\{v_n\} = \{\sin nx\}$ is also bounded sequence. Its supremum is 1 and infimum is -1.

(iii) The geometric sequence $\{ar^{n-1}\}$, r > 1 is an unbounded above sequence. It is bounded below by *a*.

(iv) $\left\{ \tan \frac{n\pi}{2} \right\}$ is an unbounded sequence.

Convergence of the Sequence

A sequence $\{s_n\}$ of real numbers is said to convergent to limit 's' as $n \to \infty$, if for every positive real number $\varepsilon > 0$, there exists a positive integer n_0 , depending upon ε , such that $|s_n - s| < \varepsilon \quad \forall \quad n > n_0$.

Theorem

A convergent sequence of real number has one and only one limit (i.e. Limit of the sequence is unique.)

Proof:

Suppose $\{s_n\}$ converges to two limits s and t, where $s \neq t$. Put $\varepsilon = \frac{|s-t|}{2}$ then there exits two positive integers n_1 and n_2 such that $\begin{vmatrix} s_n - s \end{vmatrix} < \varepsilon \qquad \forall n > n_1$ and $|s_n - t| < \varepsilon \qquad \forall n > n_2$. $\Rightarrow |s_n - s| < \varepsilon$ and $|s_n - t| < \varepsilon$ hold simultaneously $\forall n > \max(n_1, n_2)$. Thus for all $n > \max(n_1, n_2)$ we have $|s-t| = |s-s_n + s_n - t|$ $\leq |s_n - s| + |s_n - t|$ $< \varepsilon + \varepsilon = 2\varepsilon$

$$\Rightarrow |s-t| < 2\left(\frac{|s-t|}{2}\right)$$
$$\Rightarrow |s-t| < |s-t|$$

Which is impossible, therefore the limit of the sequence is unique.

Note: If $\{s_n\}$ converges to *s* then all of its infinite subsequence converge to *s*.

Cauchy Sequence

A sequence $\{x_n\}$ of real number is said to be a *Cauchy sequence* if for given positive real number ε , \exists a positive integer $n_0(\varepsilon)$ such that

 $|x_n - x_m| < \varepsilon \qquad \forall m, n > n_0$

Theorem

A Cauchy sequence of real numbers is bounded. *Proof:*

Let $\{s_n\}$ be a Cauchy sequence.

Take $\varepsilon = 1$, then there exits a positive integers n_0 such that

$$|s_n-s_m|<1$$
 $\forall m,n>n_0$.

Fix $m = n_0 + 1$ then

$$\begin{aligned} |s_n| &= \left| s_n - s_{n_0+1} + s_{n_0+1} \right| \\ &\leq \left| s_n - s_{n_0+1} \right| + \left| s_{n_0+1} \right| \\ &< 1 + \left| s_{n_0+1} \right| \qquad \forall \ n > n_0 \\ &< \lambda \qquad \forall \ n > 1 \text{, and } \lambda = 1 + \left| s_{n_0+1} \right| \quad (n_0 \text{ changes as } \varepsilon \text{ changes}) \end{aligned}$$

Hence we conclude that $\{S_n\}$ is a Cauchy sequence, which is bounded one. *Note:*

(i) Convergent sequence is bounded.

(ii) The converse of the above theorem does not hold.

i.e. every bounded sequence is not Cauchy.

Consider the sequence $\{s_n\}$ where $s_n = (-1)^n$, $n \ge 1$. It is bounded sequence because $|(-1)^n| = 1 < 2$ $\forall n \ge 1$.

But it is not a Cauchy sequence if it is then for $\varepsilon = 1$ we should be able to find a positive integer n_0 such that $|s_n - s_m| < 1$ for all $m, n > n_0$.

But with m = 2k + 1, n = 2k + 2 when $2k + 1 > n_0$, we arrive at

$$|s_n - s_m| = |(-1)^{2n+2} - (-1)^{2k+1}|$$

= $|1+1| = 2 < 1$ is absurd

Hence $\{s_n\}$ is not a Cauchy sequence. Also this sequence is not a convergent sequence. (it is an oscillatory sequence).

Divergent Sequence

A $\{s_n\}$ is said to be divergent if it is not convergent or it is unbounded.

e.g. $\{n^2\}$ is divergent, it is unbounded.

(ii) $\{(-1)^n\}$ tends to 1 or -1 according as *n* is even or odd. It oscillates finitely.

(iii) $\{(-1)^n n\}$ is a divergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the sequence itself is a divergent.

Theorem

If $s_n < u_n < t_n \quad \forall n \ge n_0$ and if both the $\{s_n\}$ and $\{t_n\}$ converge to same limits as *s*, then the sequence $\{u_n\}$ also converges to *s*.

Proof:

Since the sequence $\{s_n\}$ and $\{t_n\}$ converge to the same limit *s*, therefore, for given $\varepsilon > 0$ there exists two positive integers $n_1, n_2 > n_0$ such that

i.e.

$$\begin{vmatrix} t_n - s \end{vmatrix} < \varepsilon \qquad \forall \ n > n_2 \\ s - \varepsilon < s_n < s + \varepsilon \qquad \forall \ n > n_1 \\ s - \varepsilon < t_n < s + \varepsilon \qquad \forall \ n > n_2 \end{vmatrix}$$

 $|s_n - s| < \varepsilon$ $\forall n > n_1$

Since we have given

$$s_n < u_n < t_n \qquad \forall n > n_0$$

$$\therefore s - \varepsilon < s_n < u_n < t_n < s + \varepsilon \qquad \forall n > \max(n_0, n_1, n_2)$$

$$\Rightarrow s - \varepsilon < u_n < s + \varepsilon \qquad \forall n > \max(n_0, n_1, n_2)$$

i.e. $|u_n - s| < \varepsilon \qquad \forall n > \max(n_0, n_1, n_2)$
i.e. $\lim_{n \to \infty} u_n = s$.

Example

Show that
$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

Solution

Using Bernoulli's Inequality

$$\left(1+\frac{1}{\sqrt{n}}\right)^n \ge 1+\frac{n}{\sqrt{n}} \ge \sqrt{n} \ge 1 \qquad \forall n.$$

Also

$$\left(1 + \frac{1}{\sqrt{n}}\right)^2 = \left[\left(1 + \frac{1}{\sqrt{n}}\right)^n\right]^{\frac{2}{n}} > \left(\sqrt{n}\right)^{\frac{2}{n}} > n^{\frac{1}{n}} \ge 1,$$

$$\Rightarrow 1 \le n^{\frac{1}{n}} < \left(1 + \frac{1}{\sqrt{n}}\right)^{2},$$

$$\Rightarrow \lim_{n \to \infty} 1 \le \lim_{n \to \infty} n^{\frac{1}{n}} < \lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{2},$$

$$\Rightarrow 1 \le \lim_{n \to \infty} n^{\frac{1}{n}} < 1.$$

i.e.
$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1.$$

Example

Show that
$$\lim_{n \to \infty} \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right) = 0$$

Solution Consider

$$s_n = \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2}\right)$$

and

$$\frac{n}{(2n)^2} < s_n < \frac{n}{n^2}$$

$$\Rightarrow \frac{1}{4n} < s_n < \frac{1}{n}$$

$$\Rightarrow \lim_{n \to \infty} \frac{1}{4n} < \lim_{n \to \infty} s_n < \lim_{n \to \infty} \frac{1}{n}$$

$$\Rightarrow 0 < \lim_{n \to \infty} s_n < 0$$

$$\Rightarrow \lim_{n \to \infty} S_n = 0$$

Theorem

If the sequence $\{s_n\}$ converges to *s* then \exists a positive integer *n* such that $|s_n| > \frac{1}{2}s$.

Proof:

We fix
$$\varepsilon = \frac{1}{2} |s| > 0$$

 $\Rightarrow \exists$ a positive integer n_1 such that
 $|s_n - s| < \varepsilon$ for $n > n_1$
 $\Rightarrow |s_n - s| < \frac{1}{2} |s|$

Now

$$\frac{1}{2} |s| = |s| - \frac{1}{2} |s|$$

$$< |s| - |s_n - s| \leq |s + (s_n - s)|$$

$$\Rightarrow \frac{1}{2} |s| < |s_n|.$$

Theorem

Let *a* and *b* be fixed real numbers if $\{s_n\}$ and $\{t_n\}$ converge to *s* and *t* respectively, then

(i)
$$\{as_n + bt_n\}$$
 converges to $as + bt$.
(ii) $\{s_n t_n\}$ converges to st .
(iii) $\left\{\frac{s_n}{t_n}\right\}$ converges to $\frac{s}{t}$, provided $t_n \neq 0 \quad \forall n \text{ and } t \neq 0$.

Proof:

Since $\{s_n\}$ and $\{t_n\}$ converge to *s* and *t* respectively, $|s_n - s| < \varepsilon \quad \forall \ n > n_1 \in \mathbb{N}$ $|t_n - t| < \varepsilon \quad \forall \ n > n_2 \in \mathbb{N}$ Also $\exists \ \lambda > 0$ such that $|s_n| < \lambda \quad \forall \ n > 1$ ($\because \{s_n\}$ is bounded)

(*i*) We have

$$\begin{aligned} \left| \left(as_n + bt_n \right) - \left(as + bt \right) \right| &= \left| a(s_n - s) + b(t_n - t) \right| \\ &\leq \left| a(s_n - s) \right| + \left| b(t_n - t) \right| \\ &< \left| a \right| \varepsilon + \left| b \right| \varepsilon \qquad \forall n > \max(n_1, n_2) \\ &= \varepsilon_1, \end{aligned}$$

where $\varepsilon_1 = |a|\varepsilon + |b|\varepsilon$ a certain number. This implies $\{as_n + bt_n\}$ converges to as + bt.

(*ii*)
$$|s_n t_n - st| = |s_n t_n - s_n t + s_n t - st|$$

 $= |s_n (t_n - t) + t (s_n - s)| \le |s_n| \cdot |(t_n - t)| + |t| \cdot |(s_n - s)|$
 $< \lambda \varepsilon + |t| \varepsilon \quad \forall n > \max(n_1, n_2)$
 $= \varepsilon_2, \quad \text{where } \varepsilon_2 = \lambda \varepsilon + |t| \varepsilon \text{ a certain number.}$

This implies $\{s_n t_n\}$ converges to *st*.

(*iii*)
$$\left| \frac{1}{t_n} - \frac{1}{t} \right| = \left| \frac{t - t_n}{t_n t} \right|$$

= $\frac{|t_n - t|}{|t_n||t|} < \frac{\varepsilon}{\frac{1}{2}|t||t|}$ $\forall n > \max(n_1, n_2)$ $\because |t_n| > \frac{1}{2}t$

$$= \frac{\varepsilon}{\frac{1}{2}|t|^2} = \varepsilon_3, \qquad \text{where } \varepsilon_3 = \frac{\varepsilon}{\frac{1}{2}|t|^2} \text{ a certain number.}$$

This implies $\left\{\frac{1}{t_n}\right\}$ converges to $\frac{1}{t}$.
Hence $\left\{\frac{s_n}{t_n}\right\} = \left\{s_n \cdot \frac{1}{t_n}\right\}$ converges to $s \cdot \frac{1}{t} = \frac{s}{t}$. (from (ii))

For each irrational number *x*, there exists a sequence $\{r_n\}$ of distinct rational numbers such that $\lim_{n\to\infty} r_n = x$.

Proof:

Since x and x + 1 are two different real numbers

 \therefore \exists a rational number r_1 such that

$$x < r_1 < x + 1$$

Similarly \exists a rational number $r_2 \neq r_1$ such that

$$x < r_2 < \min\left(r_1, x + \frac{1}{2}\right) < x + 1$$

Continuing in this manner we have

$$x < r_{3} < \min\left(r_{2}, x + \frac{1}{3}\right) < x + 1$$

$$x < r_{4} < \min\left(r_{3}, x + \frac{1}{4}\right) < x + 1$$

$$\dots$$

$$x < r_{n} < \min\left(r_{n-1}, x + \frac{1}{n}\right) < x + 1$$

This implies that \exists a sequence $\{r_n\}$ of the distinct rational number such that

$$x - \frac{1}{n} < x < r_n < x + \frac{1}{n}.$$

Since

$$\lim_{n\to\infty}\left(x-\frac{1}{n}\right) = \lim_{n\to\infty}\left(x+\frac{1}{n}\right) = x.$$

Therefore

$$\lim_{n\to\infty}r_n=x$$

Let a sequence $\{s_n\}$ be a bounded sequence.

(i) If $\{s_n\}$ is monotonically increasing then it converges to its supremum.

(*ii*) If $\{s_n\}$ is monotonically decreasing then it converges to its infimum.

Proof

Let $S = \sup s_n$ and $s = \inf s_n$ Take $\varepsilon > 0$ Since $S = \sup s_n$ *(i)* $\therefore \exists s_{n_0} \text{ such that } S - \varepsilon < s_{n_0}$ Since $\{s_n\}$ is \uparrow (\uparrow stands for monotonically increasing) $\therefore S - \varepsilon < s_{n_0} < s_n < S < S + \varepsilon$ for $n > n_0$ $\Rightarrow S - \varepsilon < s_n < S + \varepsilon$ for $n > n_0$ $\Rightarrow |s_n - S| < \varepsilon$ for $n > n_0$ $\Rightarrow \lim_{n \to \infty} s_n = S$ (*ii*) Since $s = \inf S_n$ $\therefore \exists s_{n_1} \text{ such that } s_{n_1} < s + \varepsilon$ Since $\{s_n\}$ is \downarrow . (\downarrow stands for monotonically decreasing) $\therefore s - \varepsilon < s < s_n < s_{n_1} < s + \varepsilon \quad \text{for } n > n_1$ $\Rightarrow s - \varepsilon < s_n < s + \varepsilon \qquad \text{for } n > n_1$ $\Rightarrow |s_n - s| < \varepsilon \qquad \text{for } n > n_1$ Thus $\lim_{n \to \infty} s_n = s$

Note

A monotonic sequence can not oscillate infinitely.

Example:

Show that $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is bounded sequence. Consider $\left\{s_n\right\} = \left\{ \left(1 + \frac{1}{n}\right)^n \right\}$

As shown earlier it is an increasing sequence

Take
$$s_{2n} = \left(1 + \frac{1}{2n}\right)^{2n}$$
, then $\sqrt{s_{2n}} = \left(1 + \frac{1}{2n}\right)^n$,
 $\Rightarrow \frac{1}{\sqrt{s_{2n}}} = \left(\frac{2n}{2n+1}\right)^n \Rightarrow \frac{1}{\sqrt{s_{2n}}} = \left(1 - \frac{1}{2n+1}\right)^n$

Using Bernoulli's Inequality we have

$$\Rightarrow \frac{1}{\sqrt{s_{2n}}} \ge 1 - \frac{n}{2n+1} > 1 - \frac{n}{2n} = \frac{1}{2} \qquad \qquad \because \left(1 - \frac{1}{2n+1}\right)^n \ge 1 - \frac{n}{2n+1}$$
$$\Rightarrow \sqrt{s_{2n}} < 2 \qquad \forall n = 1, 2, 3, \dots$$
$$\Rightarrow s_{2n} < 4 \qquad \forall n = 1, 2, 3, \dots$$
$$\Rightarrow s_n < s_{2n} < 4 \qquad \forall n = 1, 2, 3, \dots$$

Which show that the sequence $\{s_n\}$ is bounded one.

Hence $\{s_n\}$ is a convergent sequence the number to which it converges is its supremum, which is denoted by 'e' and 2 < e < 3.

Recurrence Relation

A sequence is said to be defined *recursively* or *by recurrence relation* if the general term is given as a relation of its preceding and succeeding terms in the sequence together with some initial condition.

Example:

Let
$$t_1 > 0$$
 and let $\{t_n\}$ be defined by $t_{n+1} > 2 - \frac{1}{t_n}$ for $n \ge 1$.

- (i) Show that $\{t_n\}$ is decreasing sequence.
- (ii) It is bounded below.

(iii) Find the limit of the sequence.

Let $t_1 > 0$ and let $\{t_n\}$ be defined by $t_{n+1} > 2 - \frac{1}{t}$; $n \ge 1$

$$\Rightarrow t_n > 0 \quad \forall n \ge 1$$

Also $t_n - t_{n+1} = t_n - 2 + \frac{1}{t}$

$$=\frac{t_n^2 - 2t_n + 1}{t_n} = \frac{(t_n - 1)^2}{t_n} > 0.$$

 $\Rightarrow t_n > t_{n+1} \quad \forall n \ge 1.$ This implies that t_n is monotonically decreasing.

Since $t_n > 1$ $\forall n \ge 1$, $\Rightarrow t_n$ is bounded below $\Rightarrow t_n$ is convergent. Let us suppose $\lim_{n \to \infty} t_n = t$.

Then
$$\lim_{n \to \infty} t_{n+1} = \lim_{n \to \infty} t_n \implies \lim_{n \to \infty} \left(2 - \frac{1}{t_n} \right) = \lim_{n \to \infty} t_n$$

 $\Rightarrow 2 - \frac{1}{t} = t \implies \frac{2t - 1}{t} = t \implies 2t - 1 = t^2 \implies t^2 - 2t + 1 = 0$
 $\Rightarrow (t - 1)^2 = 0 \implies t = 1.$

Every Cauchy sequence of real numbers has a convergent subsequence. *Proof:*

Suppose $\{s_n\}$ is a Cauchy sequence. Let $\varepsilon > 0$ then \exists a positive integer $n_0 \ge 1$ such that

$$\begin{split} \left| s_{n_{k}} - s_{n_{k-1}} \right| &< \frac{\varepsilon}{2^{k}} \qquad \forall \ n_{k}, n_{k-1}, \ k = 1, 2, 3, \dots \\ \text{Put} \qquad b_{k} &= \left(s_{n_{1}} - s_{n_{0}} \right) + \left(s_{n_{2}} - s_{n_{1}} \right) + \dots + \left(s_{n_{k}} - s_{n_{k-1}} \right) \\ \Rightarrow \left| b_{k} \right| &= \left| \left(s_{n_{1}} - s_{n_{0}} \right) + \left(s_{n_{2}} - s_{n_{1}} \right) + \dots + \left| \left(s_{n_{k}} - s_{n_{k-1}} \right) \right| \\ &\leq \left| \left(s_{n_{1}} - s_{n_{0}} \right) \right| + \left| \left(s_{n_{2}} - s_{n_{1}} \right) \right| + \dots + \left| \left(s_{n_{k}} - s_{n_{k-1}} \right) \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2^{2}} + \dots + \frac{\varepsilon}{2^{k}} \\ &= \varepsilon \left(\frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{k}} \right) \\ &= \varepsilon \left(\frac{1}{2} \left(1 - \frac{1}{2^{k}} \right) \right) \\ &= \varepsilon \left(\frac{1}{2} \left(1 - \frac{1}{2^{k}} \right) \\ &\Rightarrow \ \left| b_{k} \right| < \varepsilon \qquad \forall \ k \ge 1 \\ \Rightarrow \ \left\{ b_{k} \right\} \text{ is convergent} \\ & \because \ b_{k} = s_{n_{k}} - s_{n_{0}} \qquad \therefore \ s_{n_{k}} = b_{k} + s_{n_{0}}, \end{split}$$

where s_{n_0} is a certain fix number therefore $\{s_{n_k}\}$ which is a subsequence of $\{s_n\}$ is convergent.

Theorem (Cauchy's General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.

Proof:

Necessary Condition

Let $\{s_n\}$ be a convergent sequence, which converges to s.

Then for given $\varepsilon > 0 \exists$ a positive integer n_0 , such that

$$|s_n-s| < \frac{\varepsilon}{2} \quad \forall \quad n > n_0$$

Now for $n > m > n_0$

$$\begin{split} \left| s_{n} - s_{m} \right| &= \left| s_{n} - s + s_{m} - s \right| \\ &\leq \left| s_{n} - s \right| + \left| s_{m} - s \right| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,. \end{split}$$

Which shows that $\{s_n\}$ is a Cauchy sequence.

Sufficient Condition

Let us suppose that $\{s_n\}$ is a Cauchy sequence then for $\varepsilon > 0$, \exists a positive integer m_1 such that

$$|s_n - s_m| < \frac{\varepsilon}{2} \forall n, m > m_1 \dots (i)$$

Since $\{s_n\}$ is a Cauchy sequence

therefore it has a subsequence $\{s_{n_k}\}$ converging to *s* (say).

 $\Rightarrow \exists$ a positive integer m_2 such that

$$\left| s_{n_k} - s \right| < \frac{\varepsilon}{2} \qquad \forall n > m_2 \dots \dots (ii)$$

Now

$$|s_n - s| = |s_n - s_{n_k} + s_{n_k} - s|$$

$$\leq |s_n - s_{n_k}| + |s_{n_k} - s|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \forall n > \max(m_1, m_2),$$

this shows that $\{s_n\}$ is a convergent sequence.

Example

Prove that $\left\{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}\right\}$ is divergent sequence.

Let $\{t_n\}$ be defined by

$$t_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

For $m, n \in \mathbb{N}$, n > m we have

$$|t_n - t_m| = \frac{1}{m+1} + \frac{1}{m+2} + \dots + \frac{1}{n}$$

> $(n-m)\frac{1}{n} = 1 - \frac{m}{n}.$

In particular if n = 2m then

$$\left|t_{n}-t_{m}\right| > \frac{1}{2}$$

This implies that $\{t_n\}$ is not a Cauchy sequence therefore it is divergent.

Theorem (nested intervals)

Suppose that $\{I_n\}$ is a sequence of the closed interval such that $I_n = [a_n, b_n]$, $I_{n+1} \subset I_n \ \forall \ n \ge 1$, and $(b_n - a_n) \to 0$ as $n \to \infty$ then $\bigcap I_n$ contains one and only one point.

Proof:

Since $I_{n+1} \subset I_n$

 $\therefore a_1 < a_2 < a_3 < \ldots < a_{n-1} < a_n < b_n < b_{n-1} < \ldots < b_3 < b_2 < b_1$

 $\{a_n\}$ is increasing sequence, bounded above by b_1 and bounded below by a_1 .

And $\{b_n\}$ is decreasing sequence bounded below by a_1 and bounded above by b_1 .

 $\Rightarrow \{a_n\}$ and $\{b_n\}$ both are convergent.

Suppose $\{a_n\}$ converges to *a* and $\{b_n\}$ converges to *b*.

But
$$|a-b| = |a-a_n + a_n - b_n + b_n - b|$$

 $\leq |a_n - a| + |a_n - b_n| + |b_n - b| \rightarrow 0$ as $n \rightarrow \infty$.
 $\Rightarrow a = b$
and $a_n < a < b_n \quad \forall n \ge 1$.

n

Theorem (Bolzano-Weierstrass theorem)

Every bounded sequence has a convergent subsequence.

Proof:

Let $\{s_n\}$ be a bounded sequence.

Take $a_1 = \inf s_n$ and $b_1 = \sup s_n$

Then $a_1 < s_n < b_1 \quad \forall n \ge 1$.

Now bisect interval $[a_1, b_1]$ such that at least one of the two sub-intervals contains infinite numbers of terms of the sequence.

Denote this sub-interval by $[a_2, b_2]$.

If both the sub-intervals contain infinite number of terms of the sequence then choose the one on the right hand.

Then clearly $a_1 \le a_2 < b_2 \le b_1$.

Suppose there exist a subinterval $[a_k, b_k]$ such that

$$a_1 \le a_2 \le \ldots \le a_k < b_k \le \ldots \le b_2 \le b_1$$
$$\Rightarrow (b_k - a_k) = \frac{1}{2^k} (b_1 - a_1)$$

Bisect the interval $[a_k, b_k]$ in the same manner and choose $[a_{k+1}, b_{k+1}]$ to have $a_1 \le a_2 \le \ldots \le a_k \le a_{k+1} \le b_k \le \ldots \le b_2 \le b_1$

$$a_1 \le a_2 \le \ldots \le a_k \le a_{k+1} < b_{k+1} \le b_k \le \ldots \le b_2 \le l$$

and

 $b_{k+1} - a_{k+1} = \frac{1}{2^{k+1}} (b_1 - a_1)$

This implies that we obtain a sequence of interval $[a_n, b_n]$ such that

$$b_n - a_n = \frac{1}{2^n} (b_1 - a_1) \to 0 \text{ as } n \to \infty$$

 \Rightarrow we have a unique point s such that

$$s = \bigcap [a_n, b_n]$$

there are infinitely many terms of the sequence whose length is $\varepsilon > 0$ that contain *s*. For $\varepsilon = 1$ there are infinitely many values of *n* such that

$$|s_n - s| < 1$$

Let n_1 be one of such value then

$$\left|s_{n_1}-s\right| < 1$$

Again choose $n_2 > n_1$ such that

$$\left|s_{n_2}-s\right| < \frac{1}{2}$$

Continuing in this manner we find a sequence $\{s_{n_k}\}$ for each positive integer *k* such that $n_k < n_{k+1}$ and

Hence there is a subsequence $\{s_{n_k}\}$ which converges to *s*.

Limit Inferior of the sequence

Suppose $\{s_n\}$ is bounded below then we define limit inferior of $\{s_n\}$ as follow $\lim_{n \to \infty} (\inf s_n) = \lim_{n \to \infty} u_k, \text{ where } u_k = \inf \{s_n : n \ge k\}$

If s_n is not bounded below then

 $\lim_{n\to\infty} (\inf s_n) = -\infty.$

Limit Superior of the sequence

Suppose $\{s_n\}$ is bounded above then we define limit superior of $\{s_n\}$ as follow $\lim_{n \to \infty} (\sup s_n) = \lim_{n \to \infty} v_k, \text{ where } v_k = \inf \{s_n : n \ge k\}$ If s_n is not bounded above then we have $\lim_{n \to \infty} (\sup s_n) = +\infty.$

Note:

(*i*) A bounded sequence has unique limit inferior and superior (*ii*) Let $\{s_n\}$ contains all the rational numbers, then every real number is a subsequencial limit then limit superior of s_n is $+\infty$ and limit inferior of s_n is $-\infty$ (*iii*) Let $\{s_n\} = (-1)^n \left(1 + \frac{1}{n}\right)$

(*iii*) Let
$$\{s_n\} = (-1)^n \left(1 + \frac{1}{n}\right)$$

then limit superior of s_n is 1 and limit inferior of s_n is -1.

$$\begin{aligned} (iv) \text{ Let } s_n &= \left(1 + \frac{1}{n}\right) \cos n\pi \,.\\ \text{Then } u_k &= \inf\left\{s_n : n \ge k\right\} \\ &= \inf\left\{\left(1 + \frac{1}{k}\right) \cos k\pi, \left(1 + \frac{1}{k+1}\right) \cos(k+1)\pi, \left(1 + \frac{1}{k+2}\right) \cos(k+2)\pi, \dots, n\right\} \right\} \\ &= \left\{\left(1 + \frac{1}{k}\right) \cos k\pi \qquad \text{if } k \text{ is } odd \\ \left(1 + \frac{1}{k+1}\right) \cos(k+1)\pi \qquad \text{if } k \text{ is } even \right. \end{aligned} \right\} \\ &\Rightarrow \lim_{n \to \infty} (\inf s_n) = \lim_{n \to \infty} u_k = -1 \\ \text{Also} \quad v_k = \sup\left\{s_n : n \ge k\right\} \\ &= \left\{\left(1 + \frac{1}{k+1}\right) \cos(k+1)\pi \qquad \text{if } k \text{ is } odd \\ \left(1 + \frac{1}{k}\right) \cos k\pi \qquad \text{if } k \text{ is } even \right. \end{aligned}$$

$$\Rightarrow \lim_{n \to \infty} (\inf s_n) = \lim_{n \to \infty} v_k = 1 \\ \Rightarrow \lim_{n \to \infty} (\inf s_n) = \lim_{n \to \infty} v_k = 1 \end{aligned}$$

If $\{s_n\}$ is a convergent sequence then

 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} (\inf s_n) = \lim_{n \to \infty} (\sup s_n)$

Proof:

Let $\lim_{n\to\infty} s_n = s$ then for a real number $\varepsilon > 0$, \exists a positive integer n_0 such that

$$\begin{vmatrix} s_n - s \end{vmatrix} < \varepsilon \qquad \forall \ n \ge n_0 \ \dots \dots \ (i)$$

i.e. $s - \varepsilon < s_n < s + \varepsilon \qquad \forall \ n \ge n_0$
If $v_k = \sup\{s_n : n \ge k\}$
Then $s - \varepsilon < v_n < s + \varepsilon \qquad \forall \ k \ge n_0$
 $\Rightarrow s - \varepsilon < \lim_{k \to \infty} v_n < s + \varepsilon \qquad \forall \ k \ge n_0 \ \dots \ (ii)$

from (i) and (ii) we have

$$s = \lim_{k \to \infty} \sup\{s_n\}$$

We can have the same result for limit inferior of $\{s_n\}$ by taking

$$u_k = \inf\left\{s_n : n \ge k\right\}.$$

