Chapter 2 - Sequences

Course Title: Real Analysis 1
Course Code: MTH321
Course instructor: Dr. Atiq ur Rehman
Class: MSc-II
Course URL: www.mathcity.org/atiq/fa14-mth321

Sequence

A sequence is a function whose domain of definition is the set of natural numbers.

Or it can also be defined as an ordered set.
Notation:
An infinite sequence is denoted as
$\left\{s_{n}\right\}_{n=1}^{\infty}$ or $\left\{s_{n}: n \in \mathbb{N}\right\}$ or $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$ or simply as $\left\{s_{n}\right\}$,
e.g. i) $\{n\}=\{1,2,3, \ldots\}$.
ii) $\left\{\frac{1}{n}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$.
iii) $\left\{(-1)^{n+1}\right\}=\{1,-1,1,-1, \ldots\}$.

Subsequence

It is a sequence whose terms are contained in given sequence.
A subsequence of $\left\{s_{n}\right\}_{n=1}^{\infty}$ is usually written as $\left\{s_{n_{k}}\right\}^{\infty}$.

Increasing Sequence

A sequence $\left\{s_{n}\right\}$ is said to be an increasing sequence if $s_{n+1} \geq s_{n} \quad \forall n \geq 1$.

Decreasing Sequence

A sequence $\left\{s_{n}\right\}$ is said to be an decreasing sequence if $s_{n+1} \leq s_{n} \quad \forall n \geq 1$.

Monotonic Sequence

A sequence $\left\{s_{n}\right\}$ is said to be monotonic sequence if it is either increasing or decreasing.
$\left\{s_{n}\right\}$ is monotonically increasing if $s_{n+1}-s_{n} \geq 0$ or $\frac{s_{n+1}}{s_{n}} \geq 1, \quad \forall n \geq 1$.
$\left\{s_{n}\right\}$ is monotonically decreasing if $s_{n}-s_{n+1} \geq 0$ or $\frac{s_{n}}{s_{n+1}} \geq 1, \forall n \geq 1$.

Strictly Increasing or Decreasing

$\left\{s_{n}\right\}$ is called strictly increasing or decreasing according as

$$
s_{n+1}>s_{n} \text { or } s_{n+1}<s_{n} \quad \forall n \geq 1 .
$$

Bernoulli's Inequality

Let $p \in \mathbb{R}, p \geq-1$ and $p \neq 0$ then for $n \geq 2$ we have

$$
(1+p)^{n}>1+n p .
$$

Proof:

We shall use mathematical induction to prove this inequality.
If $n=2$

$$
\begin{aligned}
L . H . S & =(1+p)^{2}=1+2 p+p^{2} \\
\text { R.H.S } & =1+2 p \\
& \Rightarrow \text { L.H.S }>\text { R.H.S }
\end{aligned}
$$

i.e. condition I of mathematical induction is satisfied.

Suppose $(1+p)^{k}>1+k p$ \qquad where $k \geq 2$
Now $(1+p)^{k+1}=(1+p)(1+p)^{k}$

$$
\begin{array}{ll}
>(1+p)(1+k p) & \text { using }(i) \\
=1+k p+p+k p^{2} & \\
=1+(k+1) p+k p^{2} \\
\geq 1+(k+1) p \quad \text { ignoring } k p^{2} \geq 0,
\end{array}
$$

$$
\Rightarrow(1+p)^{k+1}>1+(k+1) p
$$

Since the truth for $n=k$ implies the truth for $n=k+1$ therefore condition II of mathematical induction is satisfied. Hence we conclude that $(1+p)^{n}>1+n p$.

Example:

Prove that $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is an increasing sequence.
Let $s_{n}=\left(1+\frac{1}{n}\right)^{n} \quad$ where $n \geq 1$.
To prove that this sequence is an increasing sequence, we use $p=\frac{-1}{n^{2}}, \quad n \geq 2$ in Bernoulli's inequality to have

$$
\begin{aligned}
& \left(1-\frac{1}{n^{2}}\right)^{n}>1-\frac{n}{n^{2}} \\
\Rightarrow & \left(\left(1-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\right)^{n}>1-\frac{1}{n} \\
\Rightarrow & \left(1+\frac{1}{n}\right)^{n}>\left(1-\frac{1}{n}\right)^{1-n}=\left(\frac{n-1}{n}\right)^{1-n}=\left(\frac{n}{n-1}\right)^{n-1}=\left(1+\frac{1}{n-1}\right)^{n-1} \\
\Rightarrow & s_{n}>s_{n-1} \quad \forall n \geq 1 .
\end{aligned}
$$

This shows that $\left\{s_{n}\right\}$ is increasing sequence.

Example:

Prove that a sequence $\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$ is a decreasing sequence.
Let $t_{n}=\left(1+\frac{1}{n}\right)^{n+1} \quad ; n \geq 1$.
We use $p=\frac{1}{n^{2}-1}$ in Bernoulli's inequality.

$$
\begin{equation*}
\left(1+\frac{1}{n^{2}-1}\right)^{n}>1+\frac{n}{n^{2}-1} . \tag{i}
\end{equation*}
$$

where

$$
\begin{align*}
1+\frac{1}{n^{2}-1}=\frac{n^{2}}{n^{2}-1}=\left(\frac{n}{n-1}\right)\left(\frac{n}{n+1}\right) \\
\Rightarrow\left(1+\frac{1}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)=\left(\frac{n}{n-1}\right) \ldots \ldots \ldots \tag{ii}
\end{align*}
$$

Now $t_{n-1}=\left(1+\frac{1}{n-1}\right)^{n}=\left(\frac{n}{n-1}\right)^{n}$

$$
\begin{array}{ll}
=\left(\left(1+\frac{1}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)\right)^{n} & \text { from (ii) } \\
=\left(1+\frac{1}{n^{2}-1}\right)^{n}\left(\frac{n+1}{n}\right)^{n} & \\
>\left(1+\frac{n}{n^{2}-1}\right)\left(\frac{n+1}{n}\right)^{n} & \text { from (i) } \\
>\left(1+\frac{1}{n}\right)\left(\frac{n+1}{n}\right)^{n} & \because \frac{n}{n^{2}-1}>\frac{n}{n^{2}}=\frac{1}{n} \\
=\left(\frac{n+1}{n}\right)^{n+1}=t_{n}, &
\end{array}
$$

i.e. $t_{n-1}>t_{n}$.

Hence the given sequence is decreasing sequence.

Bounded Sequence

A sequence $\left\{s_{n}\right\}$ is said to be bounded if there exists a positive real number λ such that $\left|s_{n}\right|<\lambda \quad \forall n \in \mathbb{N}$.

If S and s are the supremum and infimum of elements forming the bounded sequence $\left\{s_{n}\right\}$ we write $S=\sup s_{n}$ and $s=\inf s_{n}$.

All the elements of the sequence s_{n} such that $\left|s_{n}\right|<\lambda \quad \forall n \in \mathbb{N}$ lie with in the strip $\{y:-\lambda<y<\lambda\}$. But the elements of the unbounded sequence can not be contained in any strip of a finite width.

Examples

$\left\{u_{n}\right\}=\left\{\frac{(-1)^{n}}{n}\right\}$ is a bounded sequence
(ii) $\left\{v_{n}\right\}=\{\sin n x\}$ is also bounded sequence. Its supremum is 1 and infimum is -1 .
(iii) The geometric sequence $\left\{a r^{n-1}\right\}, r>1$ is an unbounded above sequence. It is bounded below by a.
(iv) $\left\{\tan \frac{n \pi}{2}\right\}$ is an unbounded sequence.

Convergence of the Sequence

A sequence $\left\{s_{n}\right\}$ of real numbers is said to convergent to limit ' s ' as $n \rightarrow \infty$, if for every positive real number $\varepsilon>0$, there exists a positive integer n_{0}, depending upon ε, such that $\left|s_{n}-s\right|<\varepsilon \quad \forall n>n_{0}$.

Theorem

A convergent sequence of real number has one and only one limit (i.e. Limit of the sequence is unique.)

Proof:

Suppose $\left\{s_{n}\right\}$ converges to two limits s and t, where $s \neq t$.
Put $\varepsilon=\frac{|s-t|}{2}$ then there exits two positive integers n_{1} and n_{2} such that

$$
\begin{aligned}
& \\
& \\
& \text { and } \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \\
& \left|s_{n}-s\right|<\varepsilon
\end{aligned}\left|s_{n}-s\right|<\varepsilon \text { and }\left|s_{n}-t\right|<\varepsilon \text { hold simultaneously } \forall n>\max \left(n_{1}, n_{2}\right) .
$$

Thus for all $n>\max \left(n_{1}, n_{2}\right)$ we have

$$
\begin{aligned}
|s-t| & =\left|s-s_{n}+s_{n}-t\right| \\
& \leq\left|s_{n}-s\right|+\left|s_{n}-t\right| \\
& <\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow|s-t|<2\left(\frac{|s-t|}{2}\right) \\
& \Rightarrow|s-t|<|s-t|
\end{aligned}
$$

Which is impossible, therefore the limit of the sequence is unique.
Note: If $\left\{s_{n}\right\}$ converges to s then all of its infinite subsequence converge to s.

Cauchy Sequence

A sequence $\left\{x_{n}\right\}$ of real number is said to be a Cauchy sequence if for given positive real number ε, \exists a positive integer $n_{0}(\varepsilon)$ such that

$$
\left|x_{n}-x_{m}\right|<\varepsilon \quad \forall m, n>n_{0}
$$

Theorem

A Cauchy sequence of real numbers is bounded.

Proof:

Let $\left\{s_{n}\right\}$ be a Cauchy sequence.
Take $\varepsilon=1$, then there exits a positive integers n_{0} such that

$$
\left|s_{n}-s_{m}\right|<1 \quad \forall m, n>n_{0} .
$$

Fix $m=n_{0}+1$ then

$$
\begin{aligned}
\left|s_{n}\right| & =\left|s_{n}-s_{n_{0}+1}+s_{n_{0}+1}\right| \\
& \leq\left|s_{n}-s_{n_{0}+1}\right|+\left|s_{n_{0}+1}\right| \\
& <1+\left|s_{n_{0}+1}\right| \quad \forall n>n_{0} \\
& <\lambda \quad \forall n>1, \text { and } \lambda=1+\left|s_{n_{0}+1}\right| \quad\left(n_{0} \text { changes as } \varepsilon \text { changes }\right)
\end{aligned}
$$

Hence we conclude that $\left\{S_{n}\right\}$ is a Cauchy sequence, which is bounded one.

Note:

(i) Convergent sequence is bounded.
(ii) The converse of the above theorem does not hold.
i.e. every bounded sequence is not Cauchy.

Consider the sequence $\left\{s_{n}\right\}$ where $s_{n}=(-1)^{n}, n \geq 1$. It is bounded sequence because

$$
\left|(-1)^{n}\right|=1<2 \quad \forall n \geq 1
$$

But it is not a Cauchy sequence if it is then for $\varepsilon=1$ we should be able to find a positive integer n_{0} such that $\left|s_{n}-s_{m}\right|<1$ for all $m, n>n_{0}$.

But with $m=2 k+1, n=2 k+2$ when $2 k+1>n_{0}$, we arrive at

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|(-1)^{2 n+2}-(-1)^{2 k+1}\right| \\
& =|1+1|=2<1 \quad \text { is absurd. }
\end{aligned}
$$

Hence $\left\{s_{n}\right\}$ is not a Cauchy sequence. Also this sequence is not a convergent sequence. (it is an oscillatory sequence).

Divergent Sequence

A $\left\{s_{n}\right\}$ is said to be divergent if it is not convergent or it is unbounded.
e.g. $\left\{n^{2}\right\}$ is divergent, it is unbounded.
(ii) $\left\{(-1)^{n}\right\}$ tends to 1 or -1 according as n is even or odd. It oscillates finitely.
(iii) $\left\{(-1)^{n} n\right\}$ is a divergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the sequence itself is a divergent.

Theorem

If $s_{n}<u_{n}<t_{n} \quad \forall n \geq n_{0}$ and if both the $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to same limits as s, then the sequence $\left\{u_{n}\right\}$ also converges to s.

Proof:

Since the sequence $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to the same limit s, therefore, for given $\varepsilon>0$ there exists two positive integers $n_{1}, n_{2}>n_{0}$ such that

$$
\begin{array}{lll}
& \left|s_{n}-s\right|<\varepsilon & \forall n>n_{1} \\
& \left|t_{n}-s\right|<\varepsilon & \forall n>n_{2} \\
\text { i.e. } \quad & s-\varepsilon<s_{n}<s+\varepsilon & \forall n>n_{1} \\
& s-\varepsilon<t_{n}<s+\varepsilon & \forall n>n_{2}
\end{array}
$$

Since we have given

$$
\begin{aligned}
\quad s_{n}<u_{n}<t_{n} & \forall n>n_{0} \\
\therefore s-\varepsilon<s_{n}<u_{n}<t_{n}<s+\varepsilon & \forall n>\max \left(n_{0}, n_{1}, n_{2}\right) \\
\Rightarrow s-\varepsilon<u_{n}<s+\varepsilon & \forall n>\max \left(n_{0}, n_{1}, n_{2}\right)
\end{aligned}
$$

i.e. $\left|u_{n}-s\right|<\varepsilon \quad \forall n>\max \left(n_{0}, n_{1}, n_{2}\right)$
i.e. $\lim _{n \rightarrow \infty} u_{n}=s$.

Example

Show that $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$

Solution

Using Bernoulli's Inequality

$$
\left(1+\frac{1}{\sqrt{n}}\right)^{n} \geq 1+\frac{n}{\sqrt{n}} \geq \sqrt{n} \geq 1 \quad \forall n
$$

Also

$$
\left(1+\frac{1}{\sqrt{n}}\right)^{2}=\left[\left(1+\frac{1}{\sqrt{n}}\right)^{n}\right]^{\frac{2}{n}}>(\sqrt{n})^{\frac{2}{n}}>n^{\frac{1}{n}} \geq 1
$$

$$
\begin{aligned}
\Rightarrow & 1 \leq n^{\frac{1}{n}}<\left(1+\frac{1}{\sqrt{n}}\right)^{2} \\
\Rightarrow & \lim _{n \rightarrow \infty} 1 \leq \lim _{n \rightarrow \infty} n^{\frac{1}{n}}<\lim _{n \rightarrow \infty}\left(1+\frac{1}{\sqrt{n}}\right)^{2}, \\
\Rightarrow & 1 \leq \lim _{n \rightarrow \infty} n^{\frac{1}{n}}<1 \\
& \text { i.e. } \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1
\end{aligned}
$$

Example

Show that $\lim _{n \rightarrow \infty}\left(\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots \ldots \ldots \ldots+\frac{1}{(2 n)^{2}}\right)=0$

Solution

Consider

$$
s_{n}=\left(\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right)
$$

and

$$
\begin{aligned}
& \frac{n}{(2 n)^{2}}<s_{n}<\frac{n}{n^{2}} \\
\Rightarrow & \frac{1}{4 n}<s_{n}<\frac{1}{n} \\
\Rightarrow & \lim _{n \rightarrow \infty} \frac{1}{4 n}<\lim _{n \rightarrow \infty} s_{n}<\lim _{n \rightarrow \infty} \frac{1}{n} \\
\Rightarrow & 0<\lim _{n \rightarrow \infty} s_{n}<0 \\
\Rightarrow & \lim _{n \rightarrow \infty} S_{n}=0
\end{aligned}
$$

Theorem

If the sequence $\left\{s_{n}\right\}$ converges to s then \exists a positive integer n such that $\left|s_{n}\right|>\frac{1}{2} s$.

Proof:

We fix $\quad \varepsilon=\frac{1}{2}|s|>0$

$$
\Rightarrow \exists \text { a positive integer } n_{1} \text { such that }
$$

$$
\left|s_{n}-s\right|<\varepsilon \quad \text { for } n>n_{1}
$$

$$
\Rightarrow\left|s_{n}-s\right|<\frac{1}{2}|s|
$$

Now

$$
\begin{aligned}
\frac{1}{2}|s| & =|s|-\frac{1}{2}|s| \\
& <|s|-\left|s_{n}-s\right| \leq\left|s+\left(s_{n}-s\right)\right| \\
\Rightarrow \frac{1}{2}|s| & <\left|s_{n}\right| .
\end{aligned}
$$

Theorem

Let a and b be fixed real numbers if $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to s and t respectively, then
(i) $\left\{a s_{n}+b t_{n}\right\}$ converges to $a s+b t$.
(ii) $\left\{s_{n} t_{n}\right\}$ converges to $s t$.
(iii) $\left\{\frac{s_{n}}{t_{n}}\right\}$ converges to $\frac{s}{t}$, provided $t_{n} \neq 0 \quad \forall n$ and $t \neq 0$.

Proof:

Since $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ converge to s and t respectively,

$$
\begin{aligned}
\therefore & \left|s_{n}-s\right|<\varepsilon \\
& \left|t_{n}-t\right|<\varepsilon
\end{aligned} \quad \forall n>n_{1} \in \mathbb{N},
$$

Also $\exists \lambda>0$ such that $\left|s_{n}\right|<\lambda \quad \forall n>1 \quad\left(\because\left\{s_{n}\right\}\right.$ is bounded $)$
(i) We have

$$
\begin{array}{rlr}
\left|\left(a s_{n}+b t_{n}\right)-(a s+b t)\right| & =\left|a\left(s_{n}-s\right)+b\left(t_{n}-t\right)\right| \\
& \leq\left|a\left(s_{n}-s\right)\right|+\left|b\left(t_{n}-t\right)\right| \\
& <|a| \varepsilon+|b| \varepsilon & \\
& =\varepsilon_{1} & \forall n>\max \left(n_{1}, n_{2}\right) \\
&
\end{array}
$$

where $\varepsilon_{1}=|a| \varepsilon+|b| \varepsilon$ a certain number.
This implies $\left\{a s_{n}+b t_{n}\right\}$ converges to $a s+b t$.
(ii)

$$
\begin{aligned}
\left|s_{n} t_{n}-s t\right| & =\left|s_{n} t_{n}-s_{n} t+s_{n} t-s t\right| \\
& =\left|s_{n}\left(t_{n}-t\right)+t\left(s_{n}-s\right)\right| \leq\left|s_{n}\right| \cdot\left|\left(t_{n}-t\right)\right|+|t| \cdot\left|\left(s_{n}-s\right)\right| \\
& <\lambda \varepsilon+|t| \varepsilon \quad \forall n>\max \left(n_{1}, n_{2}\right) \\
& =\varepsilon_{2}, \quad \quad \text { where } \varepsilon_{2}=\lambda \varepsilon+|t| \varepsilon \text { a certain number. }
\end{aligned}
$$

This implies $\left\{s_{n} t_{n}\right\}$ converges to st.
(iii) $\left|\frac{1}{t_{n}}-\frac{1}{t}\right|=\left|\frac{t-t_{n}}{t_{n} t}\right|$

$$
=\frac{\left|t_{n}-t\right|}{\left|t_{n}\right||t|}<\frac{\varepsilon}{\frac{1}{2}|t||t|} \quad \forall n>\max \left(n_{1}, n_{2}\right) \quad \because\left|t_{n}\right|>\frac{1}{2} t
$$

$$
=\frac{\varepsilon}{\frac{1}{2}|t|^{2}}=\varepsilon_{3}, \quad \quad \text { where } \varepsilon_{3}=\frac{\varepsilon}{\frac{1}{2}|t|^{2}} \text { a certain number. }
$$

This implies $\left\{\frac{1}{t_{n}}\right\}$ converges to $\frac{1}{t}$.
Hence $\left\{\frac{s_{n}}{t_{n}}\right\}=\left\{s_{n} \cdot \frac{1}{t_{n}}\right\}$ converges to $s \cdot \frac{1}{t}=\frac{s}{t} . \quad($ from (ii) $)$

Theorem

For each irrational number x, there exists a sequence $\left\{r_{n}\right\}$ of distinct rational numbers such that $\lim _{n \rightarrow \infty} r_{n}=x$.

Proof:

Since x and $x+1$ are two different real numbers
$\because \exists$ a rational number r_{1} such that

$$
x<r_{1}<x+1
$$

Similarly \exists a rational number $r_{2} \neq r_{1}$ such that

$$
x<r_{2}<\min \left(r_{1}, x+\frac{1}{2}\right)<x+1
$$

Continuing in this manner we have

$$
\begin{aligned}
& x<r_{3}<\min \left(r_{2}, x+\frac{1}{3}\right)<x+1 \\
& x<r_{4}<\min \left(r_{3}, x+\frac{1}{4}\right)<x+1
\end{aligned}
$$

$$
x<r_{n}<\min \left(r_{n-1}, x+\frac{1}{n}\right)<x+1
$$

This implies that \exists a sequence $\left\{r_{n}\right\}$ of the distinct rational number such that

$$
x-\frac{1}{n}<x<r_{n}<x+\frac{1}{n} .
$$

Since

$$
\lim _{n \rightarrow \infty}\left(x-\frac{1}{n}\right)=\lim _{n \rightarrow \infty}\left(x+\frac{1}{n}\right)=x .
$$

Therefore

$$
\lim _{n \rightarrow \infty} r_{n}=x .
$$

Theorem

Let a sequence $\left\{s_{n}\right\}$ be a bounded sequence.
(i) If $\left\{s_{n}\right\}$ is monotonically increasing then it converges to its supremum.
(ii) If $\left\{s_{n}\right\}$ is monotonically decreasing then it converges to its infimum.

Proof
Let $S=\sup s_{n}$ and $s=\inf s_{n}$
Take $\varepsilon>0$
(i) Since $S=\sup s_{n}$
$\therefore \exists s_{n_{0}}$ such that $S-\mathcal{E}<s_{n_{0}}$
Since $\left\{s_{n}\right\}$ is $\uparrow \quad$ (\uparrow stands for monotonically increasing)
$\therefore S-\varepsilon<s_{n_{0}}<s_{n}<S<S+\varepsilon \quad$ for $n>n_{0}$
$\Rightarrow S-\varepsilon<s_{n}<S+\varepsilon \quad$ for $n>n_{0}$
$\Rightarrow\left|s_{n}-S\right|<\varepsilon \quad$ for $n>n_{0}$
$\Rightarrow \lim _{n \rightarrow \infty} s_{n}=S$
(ii) Since $s=\inf S_{n}$
$\therefore \exists s_{n_{1}}$ such that $s_{n_{1}}<s+\varepsilon$
Since $\left\{s_{n}\right\}$ is \downarrow. (\downarrow stands for monotonically decreasing)
$\therefore s-\varepsilon<s<s_{n}<s_{n_{1}}<s+\varepsilon$ for $n>n_{1}$

$$
\begin{aligned}
& \Rightarrow s-\varepsilon<s_{n}<s+\varepsilon \quad \text { for } n>n_{1} \\
& \Rightarrow\left|s_{n}-s\right|<\varepsilon \quad \text { for } n>n_{1}
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} s_{n}=s$

Note

A monotonic sequence can not oscillate infinitely.

Example:

Show that $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is bounded sequence.
Consider $\left\{s_{n}\right\}=\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$
As shown earlier it is an increasing sequence
Take $s_{2 n}=\left(1+\frac{1}{2 n}\right)^{2 n}$, then $\sqrt{s_{2 n}}=\left(1+\frac{1}{2 n}\right)^{n}$,

$$
\Rightarrow \frac{1}{\sqrt{s_{2 n}}}=\left(\frac{2 n}{2 n+1}\right)^{n} \quad \Rightarrow \frac{1}{\sqrt{s_{2 n}}}=\left(1-\frac{1}{2 n+1}\right)^{n}
$$

Using Bernoulli's Inequality we have

$$
\begin{array}{ll}
\Rightarrow \frac{1}{\sqrt{s_{2 n}}} \geq 1-\frac{n}{2 n+1}>1-\frac{n}{2 n}=\frac{1}{2} & \because\left(1-\frac{1}{2 n+1}\right)^{n} \geq 1-\frac{n}{2 n+1} \\
\Rightarrow \sqrt{s_{2 n}}<2 & \forall n=1,2,3, \ldots \\
\Rightarrow s_{2 n}<4 & \forall n=1,2,3, \ldots \\
\Rightarrow s_{n}<s_{2 n}<4 & \forall n=1,2,3, \ldots
\end{array}
$$

Which show that the sequence $\left\{s_{n}\right\}$ is bounded one.
Hence $\left\{s_{n}\right\}$ is a convergent sequence the number to which it converges is its supremum, which is denoted by ' e ' and $2<e<3$.

Recurrence Relation

A sequence is said to be defined recursively or by recurrence relation if the general term is given as a relation of its preceding and succeeding terms in the sequence together with some initial condition.

Example:

Let $t_{1}>0$ and let $\left\{t_{n}\right\}$ be defined by $t_{n+1}>2-\frac{1}{t_{n}}$ for $n \geq 1$.
(i) Show that $\left\{t_{n}\right\}$ is decreasing sequence.
(ii) It is bounded below.
(iii) Find the limit of the sequence.

Let $t_{1}>0$ and let $\left\{t_{n}\right\}$ be defined by $t_{n+1}>2-\frac{1}{t_{n}} ; n \geq 1$

$$
\Rightarrow t_{n}>0 \quad \forall n \geq 1
$$

Also $\quad t_{n}-t_{n+1}=t_{n}-2+\frac{1}{t_{n}}$

$$
\begin{aligned}
& =\frac{t_{n}^{2}-2 t_{n}+1}{t_{n}}=\frac{\left(t_{n}-1\right)^{2}}{t_{n}}>0 \\
\Rightarrow t_{n}>t_{n+1} & \forall n \geq 1
\end{aligned}
$$

This implies that t_{n} is monotonically decreasing.
Since $t_{n}>1 \quad \forall n \geq 1$,
$\Rightarrow t_{n}$ is bounded below $\quad \Rightarrow t_{n}$ is convergent.
Let us suppose $\lim _{n \rightarrow \infty} t_{n}=t$.
Then $\quad \lim _{n \rightarrow \infty} t_{n+1}=\lim _{n \rightarrow \infty} t_{n} \quad \Rightarrow \lim _{n \rightarrow \infty}\left(2-\frac{1}{t_{n}}\right)=\lim _{n \rightarrow \infty} t_{n}$

$$
\begin{aligned}
& \Rightarrow 2-\frac{1}{t}=t \quad \Rightarrow \frac{2 t-1}{t}=t \quad \Rightarrow 2 t-1=t^{2} \Rightarrow t^{2}-2 t+1=0 \\
& \Rightarrow(t-1)^{2}=0 \quad \Rightarrow t=1 .
\end{aligned}
$$

Theorem

Every Cauchy sequence of real numbers has a convergent subsequence.

Proof:

Suppose $\left\{s_{n}\right\}$ is a Cauchy sequence.
Let $\varepsilon>0$ then \exists a positive integer $n_{0} \geq 1$ such that

$$
\left|s_{n_{k}}-s_{n_{k-1}}\right|<\frac{\varepsilon}{2^{k}} \quad \forall n_{k}, n_{k-1}, k=1,2,3, \ldots \ldots \ldots
$$

Put $\quad b_{k}=\left(s_{n_{1}}-s_{n_{0}}\right)+\left(s_{n_{2}}-s_{n_{1}}\right)+\ldots+\left(s_{n_{k}}-s_{n_{k-1}}\right)$

$$
\Rightarrow\left|b_{k}\right|=\left|\left(s_{n_{1}}-s_{n_{0}}\right)+\left(s_{n_{2}}-s_{n_{1}}\right)+\ldots+\left(s_{n_{k}}-s_{n_{k-1}}\right)\right|
$$

$$
\leq\left|\left(s_{n_{1}}-s_{n_{0}}\right)\right|+\left|\left(s_{n_{2}}-s_{n_{1}}\right)\right|+\ldots+\left|\left(s_{n_{k}}-s_{n_{k-1}}\right)\right|
$$

$$
<\frac{\varepsilon}{2}+\frac{\varepsilon}{2^{2}}+\ldots+\frac{\varepsilon}{2^{k}}
$$

$$
=\varepsilon\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{k}}\right)
$$

$$
=\varepsilon\left(\frac{\frac{1}{2}\left(1-\frac{1}{2^{k}}\right)}{1-\frac{1}{2}}\right)=\varepsilon\left(1-\frac{1}{2^{k}}\right)
$$

$$
\Rightarrow\left|b_{k}\right|<\varepsilon \quad \forall k \geq 1
$$

$\Rightarrow\left\{b_{k}\right\}$ is convergent

$$
\because b_{k}=s_{n_{k}}-s_{n_{0}} \quad \therefore \quad s_{n_{k}}=b_{k}+s_{n_{0}},
$$

where $s_{n_{0}}$ is a certain fix number therefore $\left\{s_{n_{k}}\right\}$ which is a subsequence of $\left\{s_{n}\right\}$ is convergent.

Theorem (Cauchy's General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.

Proof:

Necessary Condition

Let $\left\{s_{n}\right\}$ be a convergent sequence, which converges to s.
Then for given $\varepsilon>0 \exists$ a positive integer n_{0}, such that

$$
\left|s_{n}-s\right|<\frac{\varepsilon}{2} \quad \forall n>n_{0}
$$

Now for $n>m>n_{0}$

$$
\begin{aligned}
\left|s_{n}-s_{m}\right| & =\left|s_{n}-s+s_{m}-s\right| \\
& \leq\left|s_{n}-s\right|+\left|s_{m}-s\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Which shows that $\left\{s_{n}\right\}$ is a Cauchy sequence.

Sufficient Condition

Let us suppose that $\left\{s_{n}\right\}$ is a Cauchy sequence then for $\varepsilon>0, \exists$ a positive integer m_{1} such that

$$
\begin{equation*}
\left|s_{n}-s_{m}\right|<\frac{\varepsilon}{2} \forall n, m>m_{1} \tag{i}
\end{equation*}
$$

Since $\left\{s_{n}\right\}$ is a Cauchy sequence
therefore it has a subsequence $\left\{s_{n_{k}}\right\}$ converging to s (say).
$\Rightarrow \exists$ a positive integer m_{2} such that

$$
\begin{equation*}
\left|s_{n_{k}}-s\right|<\frac{\varepsilon}{2} \quad \forall n>m_{2} \tag{ii}
\end{equation*}
$$

Now

$$
\begin{array}{rlr}
\left|s_{n}-s\right| & =\left|s_{n}-s_{n_{k}}+s_{n_{k}}-s\right| \\
& \leq\left|s_{n}-s_{n_{k}}\right|+\left|s_{n_{k}}-s\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \forall n>\max \left(m_{1}, m_{2}\right),
\end{array}
$$

this shows that $\left\{s_{n}\right\}$ is a convergent sequence.

Example

Prove that $\left\{1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n}\right\}$ is divergent sequence.
Let $\left\{t_{n}\right\}$ be defined by

$$
t_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n} .
$$

For $m, n \in \mathbb{N}, n>m$ we have

$$
\begin{aligned}
\left|t_{n}-t_{m}\right| & =\frac{1}{m+1}+\frac{1}{m+2}+\ldots \ldots \ldots \ldots+\frac{1}{n} \\
& >(n-m) \frac{1}{n}=1-\frac{m}{n}
\end{aligned}
$$

In particular if $n=2 m$ then

$$
\left|t_{n}-t_{m}\right|>\frac{1}{2}
$$

This implies that $\left\{t_{n}\right\}$ is not a Cauchy sequence therefore it is divergent.
\qquad

Theorem (nested intervals)

Suppose that $\left\{I_{n}\right\}$ is a sequence of the closed interval such that $I_{n}=\left[a_{n}, b_{n}\right]$, $I_{n+1} \subset I_{n} \forall n \geq 1$, and $\left(b_{n}-a_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ then $\cap I_{n}$ contains one and only one point.
Proof:
Since $I_{n+1} \subset I_{n}$

$$
\therefore a_{1}<a_{2}<a_{3}<\ldots<a_{n-1}<a_{n}<b_{n}<b_{n-1}<\ldots<b_{3}<b_{2}<b_{1}
$$

$\left\{a_{n}\right\}$ is increasing sequence, bounded above by b_{1} and bounded below by a_{1}.
And $\left\{b_{n}\right\}$ is decreasing sequence bounded below by a_{1} and bounded above by b_{1}.
$\Rightarrow\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both are convergent.
Suppose $\left\{a_{n}\right\}$ converges to a and $\left\{b_{n}\right\}$ converges to b.
But $|a-b|=\left|a-a_{n}+a_{n}-b_{n}+b_{n}-b\right|$

$$
\leq\left|a_{n}-a\right|+\left|a_{n}-b_{n}\right|+\left|b_{n}-b\right| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

$$
\Rightarrow a=b
$$

and $\quad a_{n}<a<b_{n} \quad \forall n \geq 1$.

Theorem (Bolzano-Weierstrass theorem)

Every bounded sequence has a convergent subsequence.

Proof:

Let $\left\{s_{n}\right\}$ be a bounded sequence.
Take $a_{1}=\inf s_{n}$ and $b_{1}=\sup s_{n}$
Then $a_{1}<s_{n}<b_{1} \quad \forall n \geq 1$.
Now bisect interval $\left[a_{1}, b_{1}\right]$ such that at least one of the two sub-intervals contains infinite numbers of terms of the sequence.
Denote this sub-interval by $\left[a_{2}, b_{2}\right]$.
If both the sub-intervals contain infinite number of terms of the sequence then choose the one on the right hand.
Then clearly $a_{1} \leq a_{2}<b_{2} \leq b_{1}$.
Suppose there exist a subinterval $\left[a_{k}, b_{k}\right]$ such that

$$
\begin{aligned}
& a_{1} \leq a_{2} \leq \ldots \leq a_{k}<b_{k} \leq \ldots \leq b_{2} \leq b_{1} \\
\Rightarrow & \left(b_{k}-a_{k}\right)=\frac{1}{2^{k}}\left(b_{1}-a_{1}\right)
\end{aligned}
$$

Bisect the interval $\left[a_{k}, b_{k}\right]$ in the same manner and choose $\left[a_{k+1}, b_{k+1}\right]$ to have
and

$$
a_{1} \leq a_{2} \leq \ldots \leq a_{k} \leq a_{k+1}<b_{k+1} \leq b_{k} \leq \ldots \leq b_{2} \leq b_{1}
$$

$$
b_{k+1}-a_{k+1}=\frac{1}{2^{k+1}}\left(b_{1}-a_{1}\right)
$$

This implies that we obtain a sequence of interval $\left[a_{n}, b_{n}\right]$ such that

$$
b_{n}-a_{n}=\frac{1}{2^{n}}\left(b_{1}-a_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

\Rightarrow we have a unique point s such that

$$
s=\bigcap\left[a_{n}, b_{n}\right]
$$

there are infinitely many terms of the sequence whose length is $\varepsilon>0$ that contain s. For $\varepsilon=1$ there are infinitely many values of n such that

$$
\left|s_{n}-s\right|<1
$$

Let n_{1} be one of such value then

$$
\left|s_{n_{1}}-s\right|<1
$$

Again choose $n_{2}>n_{1}$ such that

$$
\left|s_{n_{2}}-s\right|<\frac{1}{2}
$$

Continuing in this manner we find a sequence $\left\{s_{n_{k}}\right\}$ for each positive integer k such that $n_{k}<n_{k+1}$ and

$$
\left|s_{n_{k}}-s\right|<\frac{1}{k} \quad \forall k=1,2,3,
$$

Hence there is a subsequence $\left\{s_{n_{k}}\right\}$ which converges to s.

Limit Inferior of the sequence

Suppose $\left\{s_{n}\right\}$ is bounded below then we define limit inferior of $\left\{s_{n}\right\}$ as follow

$$
\lim _{n \rightarrow \infty}\left(\inf s_{n}\right)=\lim _{n \rightarrow \infty} u_{k} \text {, where } u_{k}=\inf \left\{s_{n}: n \geq k\right\}
$$

If s_{n} is not bounded below then

$$
\lim _{n \rightarrow \infty}\left(\inf s_{n}\right)=-\infty .
$$

Limit Superior of the sequence

Suppose $\left\{s_{n}\right\}$ is bounded above then we define limit superior of $\left\{s_{n}\right\}$ as follow

$$
\lim _{n \rightarrow \infty}\left(\sup s_{n}\right)=\lim _{n \rightarrow \infty} v_{k} \text {, where } v_{k}=\inf \left\{s_{n}: n \geq k\right\}
$$

If s_{n} is not bounded above then we have

$$
\lim _{n \rightarrow \infty}\left(\sup s_{n}\right)=+\infty .
$$

Note:

(i) A bounded sequence has unique limit inferior and superior
(ii) Let $\left\{s_{n}\right\}$ contains all the rational numbers, then every real number is a subsequencial limit then limit superior of s_{n} is $+\infty$ and limit inferior of s_{n} is $-\infty$
(iii) Let $\left\{s_{n}\right\}=(-1)^{n}\left(1+\frac{1}{n}\right)$ then limit superior of s_{n} is 1 and limit inferior of s_{n} is -1 .
(iv) Let $s_{n}=\left(1+\frac{1}{n}\right) \cos n \pi$.

Then $u_{k}=\inf \left\{s_{n}: n \geq k\right\}$

$$
=\inf \left\{\left(1+\frac{1}{k}\right) \cos k \pi,\left(1+\frac{1}{k+1}\right) \cos (k+1) \pi,\left(1+\frac{1}{k+2}\right) \cos (k+2) \pi, \ldots \ldots \ldots \ldots \ldots\right.
$$

$$
= \begin{cases}\left(1+\frac{1}{k}\right) \cos k \pi & \text { if } k \text { is odd } \\ \left(1+\frac{1}{k+1}\right) \cos (k+1) \pi & \text { if } k \text { is even }\end{cases}
$$

$\Rightarrow \lim _{n \rightarrow \infty}\left(\inf s_{n}\right)=\lim _{n \rightarrow \infty} u_{k}=-1$
Also $\quad v_{k}=\sup \left\{s_{n}: n \geq k\right\}$

$$
\begin{gathered}
=\left\{\begin{array}{ll}
\left(1+\frac{1}{k+1}\right) \cos (k+1) \pi & \text { if } k \text { is odd } \\
\left(1+\frac{1}{k}\right) \cos k \pi & \text { if } k \text { is even } \\
\Rightarrow \lim _{n \rightarrow \infty}\left(\inf s_{n}\right)=\lim _{n \rightarrow \infty} v_{k}=1 &
\end{array}>.\right.
\end{gathered}
$$

Theorem

If $\left\{s_{n}\right\}$ is a convergent sequence then

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\inf s_{n}\right)=\lim _{n \rightarrow \infty}\left(\sup s_{n}\right)
$$

Proof:

Let $\lim _{n \rightarrow \infty} s_{n}=s$ then for a real number $\varepsilon>0, \exists$ a positive integer n_{0} such that

$$
\begin{array}{ll}
\quad\left|s_{n}-s\right|<\varepsilon & \forall n \geq n_{0} \\
\text { i.e. } \quad s-\varepsilon<s_{n}<s+\varepsilon & \forall n \geq n_{0} \\
v_{k}=\sup \left\{s_{n}: n \geq k\right\} & \\
s-\varepsilon<v_{n}<s+\varepsilon & \forall k \geq n_{0} \\
\Rightarrow s-\varepsilon<\lim _{k \rightarrow \infty} v_{n}<s+\varepsilon & \forall k \geq n_{0}
\end{array}
$$

If
Then
from (i) and (ii) we have

$$
s=\lim _{k \rightarrow \infty} \sup \left\{s_{n}\right\}
$$

We can have the same result for limit inferior of $\left\{s_{n}\right\}$ by taking

$$
u_{k}=\inf \left\{s_{n}: n \geq k\right\} .
$$

\qquad
..

